This is very easy! (Not really)

Logic Level 4

T H I S + V E R Y E A S Y \begin{array}{ccccc} & T& H &I & S \\ + &V & E & R & Y \\ \hline & E & A & S & Y\\ \hline \end{array}

In the cryptogram above, each letter represents a distinct single digit non-negative integer. What is the largest value of E A S Y ? \overline{EASY}?


The answer is 8605.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

T h h t u T H I S V E R Y E A S Y \color{#3D99F6} { \begin{array}{ccccc}\\ &Th&h&t&u\\ \hline &T&H&I&S\\ &V&E&R&Y\\ \hline &E&A&S&Y\\ \hline \end{array} }
u : S + Y = Y , S = 0 , a n d N O c a r r y t o t . t : I + R = 1 S = 10 , A l s o t h e r e i s a c a r r y o f 1 f r o m t t o h . T h . a n d h : T o m a x i m i z e , E = 9 , o r 8 , o r 7 , . . . p r i o r i t y i n d e s c e n d i n g o r d e r . W i t h E = 9 o f T h , E = 9 o f h a l s o . B u t t h e n H = A , s i n c e t h e r e i s a c a r r y f r o m t . E = 9. I n v a l i d . N e x t E = 8. T o m a x i m i z e , A = 9 , o r 7 , o r 6 , . . . p r i o r i t y i n d e s c e n d i n g o r d e r . h : T h e r e i s a c a r r y i n a n d c a r r y o u t . I f { E , A } = { 8 , 9 } , b u t t h e n s i n c e t h e r e i s a c a r r y i n , H = 0. A = 9 I n v a l i d . N e x t { E , A } = { 8 , 7 } , b u t H a l s o = 8 = E . A = 7 I n v a l i d . N e x t { E , A } = { 8 , 6 } , a n d H = 7. { A , E , H } = { 6 , 8 , 7 } v a l i d . B a c k t o T h : E = 8 , a n d t h e r e i s a c a r r y . T + V = 7. A = 6. S o T + V = 3 + 4 o r = 2 + 5 , i n a n y o r d e r . B a c k t o t : W e a r e l e f t o n l y w i t h I + R = 1 + 9 , i n a n y o r d e r . B a c k t o u : O p t i o n l e f t f o r Y i s , 2 , o r 3 , o r 4 , o r 5. T o m a x i m i z e , Y = 5 , t h e n T + V = 3 + 4 , i n a n y o r d e r . E A S Y = 8605 . u:~~\\ S+Y=Y,~~\implies~~S=0,~~and~NO~carry~to~t.\\ ~~~~~\\ t:~~\\ \therefore~~I+R=\overline{1S}=\overline{10},\\ \implies~~Also~there~is~a~carry~of~1~from~t~to~h.\\ ~~~~~\\ Th.~and~h:~~ \\ To~maximize,~ E=9,~or~8,~or~7,~. . .priority~in~descending~order.\\ With~E=9 ~~of~Th,~E=9~~of~h~also.\\ But~then~H=A,~since~there~is~a~carry~from~t.~~~\therefore~E=9.~Invalid.\\ Next~E=8.\\ To~maximize,~ A=9,~or~7,~or~6,~. . .priority~in~descending~order.\\ ~~~~~\\ h:~\\ There~is~a~carry~in~and~carry~out.\\ If~\{E,~ A\}=\{8,~9\},~but~then~since~there~is~a~carry~in,~~\therefore~H=0.~~\therefore~A=9~Invalid.\\ Next~\{E,~ A\}=\{8,~7\},~~but~H~also~=8=E.~\therefore~A=7~~Invalid. \\ Next~\{E,~ A\}=\{8,~6\},~and~H=7.~~\{A,~E,~H\}=\{6,8,7\}~valid.\\ ~~~~~\\ Back~to~Th:~\\ E=8,~and~there~is~a~carry.\\ \therefore~T+V=7.~A=6.~~So~T+V =3+4~~or~~=2+5,~in~any~order. \\ ~~~~~\\ Back~to~t:~\\ We~are~left~only~with~I+R=1+9,~in~any~order.\\ ~~~~~\\ Back~to~u:~\\ Option~left~for~Y~is,~~2,~or~3,~or~4,~or~5.\\ To~maximize,~Y=5,~~then~T+V=3+4,~in~any~order.\\ ~~~~~\\ \implies~~\overline{EASY}=\Large~~\overline{\color{#D61F06}{8605}}.\\

Charlz Charlizard
Mar 17, 2018

The first thing that is easy to see here is,S=0, as anything added to itself is itself.So this simply implies no carry to the count of ten's digit.We can also see S in the answer as a tens digit, which then implies the compulsory carry of 1(only 1 is possible) to the count of hundred's digit.Now if we see the 3rd column H, E,A, we can easily conclude that none of them is 9, otherwise either H and A or E and A would be same digit.Now in order to maximize the sum, the best shot is to choose E=8 and H=7.This left us with one pair that sums to ten i.e. either of R or I is 1 or 9.A=6 is the result of supposing H and E, with carry over to thousand's digit count.Now here we have a choice of 4 or 3 as T or V in order to get the sum to 8.Now for the value of Y we have choices two choices, 2 or 5, and for the given maximizing problem, 5 fits the criterion.And so the final EASY=8605.

It was actually pretty easy with code:

1
2
3
4
5
6
from itertools import permutations
for t,h,i,s,v,e,r,y,a in permutations('0123456789',9):
  if '0' in (t,v,e):
    continue
  if int(t+h+i+s)+int(v+e+r+y)==int(e+a+s+y):
    print(e+a+s+y)

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...