This looks familiar?

Calculus Level 3

p prime p 2 p 2 + 1 \large \prod_{p \text{ prime}} \dfrac{p^2}{p^2 + 1 }

If the product above is equal to π A B \frac{\pi^A}{B} for positive integers A A and B B , find 2 A + B 2A+B .


The answer is 19.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Aditya Kumar
Jan 11, 2016

First we use the formula: ζ ( s ) = p = p r i m e 1 1 p s \zeta \left( s \right) =\prod _{ p= prime }^{ }{ \frac { 1 }{ 1-{ p }^{ -s } } }

See the proof here

Now,

ζ ( 4 ) = p = p r i m e 1 1 p 4 ζ ( 4 ) = p = p r i m e 1 1 p 2 p = p r i m e 1 1 + p 2 ζ ( 4 ) = ζ ( 2 ) p = p r i m e 1 1 + p 2 p = p r i m e 1 1 + p 2 = ζ ( 4 ) ζ ( 2 ) = π 2 15 \zeta \left( 4 \right) =\prod _{ p=prime }^{ }{ \frac { 1 }{ 1-{ p }^{ -4 } } } \\ \zeta \left( 4 \right) =\prod _{ p=prime }^{ }{ \frac { 1 }{ 1-{ p }^{ -2 } } } \prod _{ p=prime }^{ }{ \frac { 1 }{ 1+{ p }^{ -2 } } } \\ \zeta \left( 4 \right) =\zeta \left( 2 \right) \prod _{ p=prime }^{ }{ \frac { 1 }{ 1+{ p }^{ -2 } } } \\ \therefore \quad \prod _{ p=prime }^{ }{ \frac { 1 }{ 1+{ p }^{ -2 } } } =\frac { \zeta \left( 4 \right) }{ \zeta \left( 2 \right) } =\frac { { \pi }^{ 2 } }{ 15 } \

Moderator note:

Good recognition of how to use the zeta function.

ζ ( s ) = p p r i m e 1 1 p s \zeta \left( s \right) =\prod _{ p\quad prime }^{ }{ \frac { 1 }{ 1-{ p }^{ -s } } } is not a definition. If it is so, why would it have a proof ! It is just a formula by Euler. Do edit the wording. By the way, nice solution :) +1.

Venkata Karthik Bandaru - 5 years, 5 months ago

Log in to reply

Thanks edited

Aditya Kumar - 5 years, 5 months ago

Log in to reply

Could you pls explain how u obtained zeta(4)/zeta(2) ?

Milind Blaze - 5 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...