This might take some time

Geometry Level 2

Find the exact value of sin 7. 5 \sin 7.5^\circ .

8 6 + 2 4 \sqrt { \frac { 8-\sqrt { 6 } +\sqrt { 2 } }{ 4 } } 8 6 2 4 \sqrt { \frac { 8-\sqrt { 6 } -\sqrt { 2 } }{ 4 } } ± 8 6 2 4 \pm \sqrt { \frac { 8-\sqrt { 6 } -\sqrt { 2 } }{ 4 } } 4 6 2 8 \sqrt { \frac { 4-\sqrt { 6 } -\sqrt { 2 } }{ 8 } }

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Apr 18, 2018

Let x = sin 7. 5 x= \sin 7.5^\circ . Then,

1 2 x 2 = cos 1 5 2 ( 1 2 x 2 ) 2 1 = 2 cos 2 1 5 1 2 ( 4 x 4 4 x 2 + 1 ) 1 = cos 3 0 = 3 2 x 4 x 2 + 2 3 16 = 0 \begin{aligned} 1-2x^2 & = \cos 15^\circ \\ 2\left(1-2x^2\right)^2 - 1 & = 2 \cos^2 15^\circ - 1 \\ 2\left(4x^4-4x^2+1\right) - 1 & = \cos 30^\circ = \frac {\sqrt 3}2 \\ x^4 - x^2 + \frac {2 - \sqrt 3}{16} & = 0 \end{aligned}

x 2 = 1 ± 1 4 2 3 16 2 x = 2 2 + 3 4 x = sin 7. 5 < 1 sin 7. 5 = 2 ( 3 + 1 ) 2 2 4 = 2 2 3 1 4 2 = 4 6 2 8 \begin{aligned} \implies x^2 & = \frac {1 {\color{#3D99F6}\pm} \sqrt{1-4\cdot \frac {2-\sqrt 3}{16}}}2 \\ x & = \sqrt{\frac {2 \ {\color{#D61F06} -} \sqrt{2+\sqrt 3}}4} & \small \color{#D61F06} x = \sin 7.5^\circ < 1 \\ \implies \sin 7.5^\circ & = \sqrt{\frac {2 - \sqrt{\frac {(\sqrt 3+1)^2}2}}4} \\ & = \sqrt{\frac {2\sqrt 2 - \sqrt 3-1}{4\sqrt 2}} \\ & = \boxed{\sqrt {\frac {4-\sqrt 6 - \sqrt 2}8}} \end{aligned}

Just fix the latex for sqrt.

Hans Gabriel Daduya - 3 years, 1 month ago

Log in to reply

Thanks. Done.

Chew-Seong Cheong - 3 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...