This moment, we own it!

Algebra Level 4

A = 12 x 3 y + 108 x y 3 + 81 y 4 + x 4 + 1 + 2 y + y 2 + 54 x 2 y 2 x 2 + x 2 y + 6 x y + 9 y 3 + 6 x y 2 + 9 y 2 A = \dfrac{12 x^{3} y + 108x y^{3} + 81y^{4} + x^{4} + 1 + 2y + y^{2} + 54x^{2} y^{2} }{x^{2} + x^{2} y + 6xy + 9y^{3} + 6xy^{2} + 9y^{2}}

Let T T be the minimum value of A A for positive real numbers x , y x,y . Find the value of 5 T 5T .


The answer is 10.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

6 solutions

Tanishq Varshney
May 11, 2015

A = ( x + 3 y ) 4 + ( y + 1 ) 2 x 2 ( y + 1 ) + 6 x y ( y + 1 ) + 9 y 2 ( y + 1 ) \huge{ A = \frac{(x+3y)^4+(y+1)^2}{x^2(y+1)+6xy(y+1)+9y^2(y+1)}}

= ( x + 3 y ) 4 + ( y + 1 ) 2 ( x + 3 y ) 2 ( y + 1 ) \large{\frac{(x+3y)^4+(y+1)^2}{(x+3y)^2(y+1)}}

= ( x + 3 y ) 2 ( y + 1 ) + ( y + 1 ) ( x + 3 y ) 2 \large{\frac{(x+3y)^2}{(y+1)} +\frac{ (y+1)}{(x+3y)^2}}

Applying A M G M AM-GM

( x + 3 y ) 2 ( y + 1 ) + ( y + 1 ) ( x + 3 y ) 2 2 1 \large{\frac{\frac{(x+3y)^2}{(y+1)} +\frac{ (y+1)}{(x+3y)^2}}{2}\geq \sqrt{1}}

T 2 T\geq 2

First of all, you have a typo in your solution. It should be,

A 2 T = min ( A ) = 2 \color{#D61F06}{A}\geq 2\implies T=\min(A)=2

Second of all, since we have to find minimum, you need to show that the equality case does exist for some x , y R + x,y\in\Bbb{R^+} as required in the problem. Otherwise, your solution is incomplete. Showing the equality case is easy though since you just use the equality case for AM-GM to show it. Interesting enough, there isn't just one but multiple equality cases for the problem (you can see that by graphing the equality case equation). Here's a part of the equality case graph which is relevant to our problem:

\qquad\qquad\qquad\qquad Image Image

This is the part of the curve ( x + 3 y ) 4 = ( y + 1 ) 2 (x+3y)^4=(y+1)^2 for positive real x , y x,y . (I admit that the image quality and accuracy of the graph is quite bad, but you can get the idea). Note that you cannot use the equality case x = 1 , y = 0 x=1,y=0 since 0 R + 0\notin\Bbb{R^+} .

Prasun Biswas - 6 years ago
Adarsh Kumar
May 11, 2015

In the numerator,after seeing the terms 81 y 4 , x 4 81y^4,x^4 ,we get that the numerator has some relation to ( x + 3 y ) 4 (x+3y)^4 ,which when we expand get that all the terms in the numerator apart from y 2 , 2 y , 1 y^2,2y,1 have been accounted for.Hence the numerator becomes: ( x + 3 y ) 4 + y 2 + 2 y + 1 = ( x + 3 y ) 4 + ( y + 1 ) 2 (x+3y)^4+y^2+2y+1\\ =(x+3y)^4+(y+1)^2 .Now,moving on to the denominator,first thing we notice is that it has the terms, ( 3 y ) 2 , x 2 , 6 x y (3y)^2,x^2,6xy ,which are present in the expansion of ( x + 3 y ) 2 (x+3y)^2 .Hence,the denominator becomes, ( x + 3 y ) 2 + x 2 y + 9 y 3 + 6 x y 2 = ( x + 3 y ) 2 + y ( x 2 + 9 y 2 + 6 x y ) = ( x + 3 y ) 2 + y ( ( x + 3 y ) 2 ) = ( x + 3 y ) 2 ( y + 1 ) (x+3y)^2+x^2y+9y^3+6xy^2\\ =(x+3y)^2+y(x^2+9y^2+6xy)\\ =(x+3y)^2+y((x+3y)^2)\\ =(x+3y)^2(y+1) .Now,the fraction has been converted to, ( x + 3 y ) 4 + ( y + 1 ) 2 ( x + 3 y ) 2 ( y + 1 ) = ( x + 3 y ) 2 ( y + 1 ) + ( y + 1 ) ( x + 3 y ) 2 \dfrac{(x+3y)^4+(y+1)^2}{(x+3y)^2(y+1)}\\ =\dfrac{(x+3y)^2}{(y+1)}+\dfrac{(y+1)}{(x+3y)^2} .Now,one can simply apply, A.M-G.M \text{A.M-G.M} .

to get idea on factoring polynomials easily
read this

Abhinav Raichur - 6 years, 1 month ago

A = ( x + 3 y ) 4 + ( y + 1 ) 2 x 2 ( y + 1 ) + 6 x y ( y + 1 ) + 9 y 2 ( y + 1 ) \large{ A = \dfrac{(x+3y)^4+(y+1)^2}{x^2(y+1)+6xy(y+1)+9y^2(y+1)}}

= ( x + 3 y ) 4 + ( y + 1 ) 2 ( x + 3 y ) 2 ( y + 1 ) \large{\dfrac{(x+3y)^4+(y+1)^2}{(x+3y)^2(y+1)}}

= ( x + 3 y ) 2 ( y + 1 ) + ( y + 1 ) ( x + 3 y ) 2 \large{\dfrac{(x+3y)^2}{(y+1)} +\dfrac{ (y+1)}{(x+3y)^2}} M i n i m u m o f 1 x + x f o r x > 0 i s a l w a y s = 2. Minimum ~of~ \dfrac 1 x + x ~ for~ x>0~ is~ always =2.\\

5 T = 5 2 = 10 \therefore 5T=5*2= \Huge \color{#EC7300}{10}

f ( x ) = 1 x + x , f ( x ) = 1 x 2 + 1 = 0. x = ± 1. f " ( x ) = 1 x 3 > 0 i f x > 0 , a n d f " ( x ) < 0 i f x < 0. x = 1 i s m i n i m u m a n d f ( 1 ) m i n = 1 x + x = 2. x = 1 i s m a x i m u m a n d f ( 1 ) m a x = 1 x + x = 2. f(x)= \dfrac 1 x + x ~ ,~~~~~~~~f'(x)=- \dfrac 1 {x^2} + 1=0.~~~~~~~\therefore~x=\pm 1.\\f"(x)=\dfrac 1 {x^3}>0~~if ~~x>0,~~~~and~~~~f"(x)<0~~if~~x<0.\\\therefore~x=1~ is~minimum~~~~~and~~~\color{#3D99F6}{ f(1)_{min}= \dfrac 1 x + x =2.}\\\therefore~x= - 1~ is~maximum~~~~~and~~~\color{#D61F06}{ f(-1)_{max}= \dfrac 1 x + x = - 2.}
E v e n a l g i b r i c a l l y , f o r Δ > 0 i f x > 1 s a y x = 1 + Δ , x + 1 x = 1 + 2 Δ + Δ 2 + 1 1 + Δ = 2 Δ + 2 + Δ 2 1 + Δ > 2 S i m i l a r l y f o r Δ < 0 i f x < 1 , x + 1 x < 2. Even~~algibrically,~~for~~\Delta>0 ~~ if~~\color{#3D99F6}{ x>1} ~~say~x=1+\Delta,\\\color{#3D99F6}{ x+\dfrac 1 x} =\dfrac{1+2*\Delta+\Delta^2+1}{1+\Delta}=\dfrac{2\Delta+2+\Delta^2}{1+\Delta}\color{#3D99F6}{ >2}\\Similarly~for~\Delta<0~~if~~\color{#D61F06}{x< - 1,~~~~~~~x+\dfrac 1 x< - 2.}

Akshay Sharma
Dec 23, 2015

This is really a unique question.

Mini Gupta
May 11, 2015

Was just listening to the song. ..!!!! This moment. ..We own it. ..

Li Yuelin
May 11, 2015

By simplification, A = [(x+3y)^4+(y+1)^4]/[x^2(y+1)+6xy(y+1)+9y^2(y+1)] = [(x+3y)^4+(y+1)^2]/[(x+3y)^2(y+1)] = (x+3y)^2/(y+1) + (y+1)/(x+3y)^2 By AM-GM inequality, T = 2 Thus 5T = 10

A = ( x + 3 y ) 4 + ( y + 1 ) 2 x 2 ( y + 1 ) + 6 x y ( y + 1 ) + 9 y 2 ( y + 1 ) \huge{ A = \frac{(x+3y)^4+(y+1)^2}{x^2(y+1)+6xy(y+1)+9y^2(y+1)}}

= ( x + 3 y ) 4 + ( y + 1 ) 2 ( x + 3 y ) 2 ( y + 1 ) \large{\frac{(x+3y)^4+(y+1)^2}{(x+3y)^2(y+1)}}

= ( x + 3 y ) 2 ( y + 1 ) + ( y + 1 ) ( x + 3 y ) 2 \large{\frac{(x+3y)^2}{(y+1)} +\frac{ (y+1)}{(x+3y)^2}}

Applying A M G M AM-GM

T = 2 T=2

Tanishq Varshney - 6 years, 1 month ago

Log in to reply

That's nice, post it as solution! @Tanishq Varshney

Harsh Shrivastava - 6 years, 1 month ago

Log in to reply

Ok i'll post it

Tanishq Varshney - 6 years, 1 month ago

Did exact same...

Rushikesh Joshi - 6 years ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...