This needs more care!

Calculus Level 5

0 sin 1 ( e x 2 ) d x = π P Q ln R + G R \int_{0}^{\infty}\sin^{-1}\left(\dfrac{e^{-x}}{\sqrt{2}}\right)\, dx=\dfrac{\pi^P}Q \ln R + \dfrac GR

The equation above holds true for positive integers P , Q , R P,Q,R with R R being a prime. Find P + Q + R P+Q+R

Notation: G = n = 0 ( 1 ) n ( 2 n + 1 ) 2 0.916 \displaystyle G = \sum_{n=0}^\infty \dfrac{ (-1)^n}{(2n+1)^2} \approx 0.916 denotes the Catalan's constant .


Try this first .


The answer is 11.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Nov 26, 2016

I = 0 ( e x 2 ) d x Let sin θ = ( e x 2 ) ; cos θ d θ = ( e x 2 ) d x = 0 π 4 θ cot θ d θ By integration by parts = θ ln ( sin θ ) 0 π 4 0 π 4 ln ( sin θ ) d θ = π 4 ln ( 1 2 ) 0 π 4 ln ( 2 sin θ ) d θ + 0 π 4 ln 2 d θ = π ln 2 8 + G 2 + π ln 2 4 G is the Catalan’s constant. = π ln 2 8 + G 2 \begin{aligned} I & = \int_0^\infty \left(\frac {e^{-x}}{\sqrt 2} \right) \ dx & \small \color{#3D99F6} \text{Let } \sin \theta = \left(\frac {e^{-x}}{\sqrt 2} \right); \ \cos \theta \ d \theta = - \left(\frac {e^{-x}}{\sqrt 2} \right) \ dx \\ & = \int_0^\frac \pi 4 \theta \cot \theta \ d \theta & \small \color{#3D99F6} \text{By integration by parts} \\ & = \theta \ln (\sin \theta) \bigg|_0^\frac \pi 4 - \int_0^\frac \pi 4 \ln (\sin \theta) \ d \theta \\ & = \frac \pi 4 \ln \left( \frac 1{\sqrt 2} \right) - {\color{#3D99F6} \int_0^\frac \pi 4 \ln (2\sin \theta) \ d \theta} + \int_0^\frac \pi 4 \ln 2 \ d \theta \\ & = - \frac {\pi \ln 2}8 + {\color{#3D99F6} \frac G2} + \frac {\pi \ln 2}4 & \small \color{#3D99F6} G\text{ is the Catalan's constant.} \\ & = \frac {\pi \ln 2}8 + \frac G2 \end{aligned}

P + Q + R = 1 + 8 + 2 = 11 \implies P+Q+R =1 + 8 + 2 = \boxed{11} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...