This One is a Classic!

Calculus Level 2

4 n = 1 ( ( 1 ) n + 1 2 n 1 ) = ? \large{4\sum_{n=1}^{\infty} \bigg ( \frac{(-1)^{n+1}}{2n-1} \bigg ) = \ ?}

This is not an original problem. \small{\text{This is not an original problem.}}

e π \pi 5 \sqrt{5} ϕ \phi None of These

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Eamon Gupta
Aug 14, 2015

4 n = 1 ( ( 1 ) n + 1 2 n 1 ) = 4 ( 1 1 3 + 1 5 1 7 ) \large{4\sum_{n=1}^{\infty}(\frac{(-1)^{n+1}}{2n-1}) = 4(1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}\cdots)}

Gregory's series is defined as

arctan ( x ) = x x 3 3 + x 5 5 x 7 7 \arctan(x) = \large{ x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} \cdots}

By substituting x = 1:

1 1 3 + 1 5 1 7 = arctan ( 1 ) \large{ 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} \cdots} = \arctan(1)

4 arctan ( 1 ) = π \large{4\arctan(1) = \boxed{\pi}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...