A calculus problem by ابراهيم فقرا

Calculus Level 5

Calculate :-

i n f x 4 a b x c x 2 2 e x 2 d x inf\int_{-\infty}^\infty |x^4-a-bx-cx^2|^2\mathrm{e}^{-x^2}\,\mathrm{d}x

where a , b , c R . a,b,c \in \ \mathbb{R}.


H i n t : x 2 n e x 2 d x = ( 2 n ) ! 4 n ( n ) ! π {\color{#20A900}Hint : } \int_{-\infty}^\infty x^{\color{#D61F06}2n }\mathrm{e}^{-x^2}\,\mathrm{d}x=\frac{({\color{#D61F06}2n })!}{4^{\color{#D61F06}n }*({\color{#D61F06}n })!}\sqrt\pi


The answer is 2.659.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Mark Hennings
Dec 23, 2018

The functions φ n ( x ) = 1 2 n n ! π 1 4 H n ( x ) e 1 2 x 2 \varphi_n(x) \; = \; \frac{1}{\sqrt{2^n n!} \pi^{\frac14}}H_n(x) e^{-\frac12x^2} form an orthonormal sequence in L 2 ( R ) L^2(\mathbb{R}) , where H n ( x ) H_n(x) is the n n Hermite polynomial. But then, for any real valued f L 2 ( R ) f \in L^2(\mathbb{R}) and α 0 , α 1 , α 2 R \alpha_0,\alpha_1,\alpha_2 \in \mathbb{R} , we have by the standard theory of orthonormal sequences, that f ( x ) j = 0 2 α j φ j ( x ) 2 d x = f ( x ) 2 d x j = 0 2 f ( x ) φ j ( x ) d x 2 + j = 0 2 [ α j f ( x ) φ j ( x ) d x ] 2 \int_{-\infty}^\infty\left| f(x) - \sum_{j=0}^2\alpha_j\varphi_j(x)\right|^2\,dx \; = \; \int_{-\infty}^\infty |f(x)|^2\,dx - \sum_{j=0}^2 \left|\int_{-\infty}^\infty f(x)\varphi_j(x)\,dx\right|^2 + \sum_{j=0}^2 \left[\alpha_j - \int_{-\infty}^\infty f(x)\varphi_j(x)\,dx\right]^2 and so, putting f ( x ) = x 4 e 1 2 x 2 f(x) = x^4e^{-\frac12x^2} , the minimum value of x 4 a b x c x 2 2 e x 2 d x \int_{-\infty}^\infty \big|x^4 - a - bx - cx^2\big|^2e^{-x^2}\,dx as a , b , c a,b,c range over all reals is x 8 e x 2 d x j = 0 2 ( x 4 e 1 2 x 2 φ j ( x ) d x ) 2 = 3 2 π = 2.658680776 \int_{-\infty}^\infty x^8e^{-x^2}\,dx - \sum_{j=0}^2 \left(\int_{-\infty}^\infty x^4e^{-\frac12x^2}\varphi_j(x)\,dx\right)^2 \; = \; \tfrac32\sqrt{\pi} = \boxed{2.658680776}

Otto Bretscher
Dec 23, 2018

I took an elementary approach, which produces the answer quickly. Noting that x x is orthogonal to the three other monomials, we want b = 0 b=0 . Using the given values, we find ( x 4 a c x 2 ) 2 e x 2 d x = a 2 I 0 + 2 a c I 2 + ( c 2 2 a ) I 4 2 c I 6 + I 8 = π 2 ( 1 8 ( 4 a + 2 c 3 ) 2 + ( c 3 ) 2 + 3 ) \int_{-\infty}^{\infty}(x^4-a-cx^2)^2e^{-x^2}dx=a^2I_0+2acI_2+(c^2-2a)I_4-2cI_6+I_8=\frac{\sqrt \pi}{2}\left(\frac{1}{8}(4a+2c-3)^2+(c-3)^2+3\right) where I n = x n e x 2 d x I_n=\int_{-\infty}^{\infty}x^n e^{-x^2}dx . The minimum (and infimum) is 3 π 2 2.659 \frac{3\sqrt{\pi}}{2}\approx \boxed{2.659} , attained when a = 3 4 , b = 0 a=-\frac{3}{4}, b=0 and c = 3 c=3 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...