This one is worth doing

Calculus Level 3

x n = ( 1 1 3 ) 2 ( 1 1 6 ) 2 ( 1 1 10 ) 2 . . . ( 1 1 n ( n + 1 ) 2 ) 2 , n 2 x_{n}=\left(1-\frac{1}{3}\right)^2 \left(1-\frac{1}{6}\right)^2 \left(1-\frac{1}{10}\right)^2 ... \left(1-\frac{1}{\frac{n(n+1)}{2}}\right)^2, n\geq 2

Find lim n x n \displaystyle \lim_{n \to \infty} x_{n} .

1 9 \frac{1}{9} 0 0 1 81 \frac{1}{81} 1 4 \frac{1}{4} 1 3 \frac{1}{3}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Ravi Dwivedi
Dec 30, 2015

( 1 1 n ( n + 1 ) 2 ) = n 2 + n 2 n ( n + 1 ) = n 1 n n + 2 n + 1 \left(1-\frac{1}{\frac{n(n+1)}{2}}\right) = \frac{n^2+n-2}{n\left(n+1\right)}=\frac{n-1}{n} \cdot\frac{n+2}{n+1}

x n = n = 1 n ( n 1 n n + 2 n + 1 ) 2 x_{n} = \displaystyle \prod_{n=1}^{n}\left(\frac{n-1}{n} \cdot \frac{n+2}{n+1}\right)^2

ln x n 2 = n = 2 n ln ( n 1 n n + 2 n + 1 ) = n = 2 n ( ln n 1 n ln n + 2 n + 1 ) \implies \frac{\large \ln x_{n}}{2} = \displaystyle \sum_{n=2}^{n} \ln \left(\frac{n-1}{n} \cdot \frac{n+2}{n+1}\right) = \displaystyle \sum_{n=2}^{n}\left( \ln \frac{n-1}{n} - \ln\frac{n+2}{n+1} \right)

= ln 1 2 + ln 2 3 ln n n + 1 ln n + 1 n + 2 = \ln \frac{1}{2}+\ln\frac{2}{3}-\ln \frac{n}{n+1} - \ln\frac{n+1}{n+2}

lim n x n = 2 lim n ( ln 1 2 + ln 2 3 ln n n + 1 ln n + 1 n + 2 ) = 2 [ ln ( 1 2 × 2 3 ) lim n ( ln n n + 1 n + 1 n + 2 ) ] \lim_{n \to \infty} x_{n} = 2 \lim_{n \to \infty}\left( \ln \frac{1}{2}+\ln\frac{2}{3}-\ln \frac{n}{n+1} - \ln \frac{n+1}{n+2}\right)=2 \left[ \ln \left(\frac{1}{2}\times \frac{2}{3}\right)- \lim_{n \to \infty} \left(\ln\frac{n}{n+1}\cdot \frac{n+1}{n+2}\right)\right]

= 2 ( ln 1 3 lim n ln n n + 2 ) =2\left( \ln \frac{1}{3}-\lim_{n \to \infty}\ln\frac{n}{n+2}\right)

Since as n n \to \infty , n n + 2 1 \frac{n}{n+2} \to 1 and thus ln n n + 2 0 \ln \frac{n}{n+2} \to 0

Putting this our expression equals 2 ln ( 1 3 ) = ln ( 1 3 ) 2 = ln ( 1 9 ) 2\ln\left(\frac{1}{3}\right)=\ln\left(\frac{1}{3}\right)^2= \ln\left(\frac{1}{9}\right)

lim n x n = 1 9 \implies \lim_{n \to \infty} x_{n} =\boxed{\frac{1}{9}}

From x n = k = 1 n ( k 1 k k + 2 k + 1 ) 2 = ( k = 1 n k 1 k ) 2 ( k = 1 n k + 2 k + 1 ) 2 x_{n} = \displaystyle \prod_{k=1}^{n}\left(\frac{k-1}{k} \cdot \frac{k+2}{k+1}\right)^2 = (\prod_{k=1}^{n}\frac{k-1}{k})^2*(\prod_{k=1}^{n}\frac{k+2}{k+1})^2 First product equal 1 n \frac{1}{n} and second product equal n + 2 3 \frac{n+2}{3}

we have x n = ( 1 n n + 2 3 ) 2 = 1 9 ( n + 2 n ) 2 x_n = (\frac{1}{n}*\frac{n+2}{3})^2 = \frac{1}{9}(\frac{n+2}{n})^2

so lim n x n = 1 9 \lim_{n \to \infty} x_{n} =\boxed{\frac{1}{9}}

Tran Hieu - 5 years, 5 months ago

Thank u for giving.Happy new year

Naveen Kumar - 5 years, 5 months ago

Log in to reply

Happy new year

Ravi Dwivedi - 5 years, 5 months ago

You can even show that only (N-1)*(N+1)^2 remains and rest all terms cancel out

Daniel Mathew - 3 years, 7 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...