This Problem Is Gold!

Geometry Level 4

In A B C \triangle{ABC} , the inscribed circle is tangent to its three sides at points D D , E E , and F F . Let r < a b r < \sqrt{ab} , the area of A B C \triangle ABC be A A B C A_{\triangle ABC} , and A A B C a + b = a b \dfrac{A_{\triangle{ABC}}}{a + b} = \sqrt{ab} . Find r a b . \dfrac{r}{\sqrt{ab}}.


The answer is 0.6180339887498948.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Nov 30, 2020

Since the circle is the incircle of A B C \triangle ABC , B D = B E = a BD=BE = a , C D = C F = b CD=CF = b and let A E = A F = c AE=AF = c . Then

c = r cot A 2 = r cot ( 18 0 B C 2 ) = r tan ( B 2 + C 2 ) = r ( tan B 2 + tan C 2 1 tan B 2 tan C 2 ) = r ( r a + r b 1 r 2 a b ) = ( a + b ) r 2 a b r 2 \begin{aligned} c & = r \cot \frac A2 = r \cot \left(\frac {180^\circ - B - C}2\right) = r \tan \left(\frac B2 + \frac C2\right) \\ & = r \left(\frac {\tan \frac B2+\tan \frac C2}{1-\tan \frac B2 \cdot \tan \frac C2} \right) = r \left(\frac {\frac ra + \frac rb}{1-\frac {r^2}{ab}} \right) = \frac {(a+b)r^2}{ab-r^2} \end{aligned}

Note that the area of A B C \triangle ABC is given by:

A = ( a + b + c ) r A a + b = ( a + b + c ) r a + b a b = ( a + b + c ) r a + b r a b = a + b a + b + c = 1 1 + r 2 a b r 2 = a b r 2 a b = 1 r 2 a b \begin{aligned} A_\triangle & = (a+b+c)r \\ \frac {A_\triangle}{a+b} & = \frac {(a+b+c)r}{a+b} \\ \sqrt{ab} & = \frac {(a+b+c)r}{a+b} \\ \implies \frac r{\sqrt{ab}} & = \frac {a+b}{a+b+c} = \frac 1{1+\frac {r^2}{ab-r^2}} = \frac {ab-r^2}{ab} = 1 - \frac {r^2}{ab} \end{aligned}

( r a b ) 2 + r a b = 1 ( r a b + 1 2 ) 2 = 1 + 1 4 r a b = 5 2 1 2 0.618 \begin{aligned} \implies \left(\frac r{\sqrt{ab}} \right)^2 + \frac r{\sqrt{ab}} & = 1 \\ \left(\frac r{\sqrt{ab}} + \frac 12 \right)^2 & = 1 + \frac 14 \\ \implies \frac r{\sqrt{ab}} & = \frac {\sqrt 5}2 - \frac 12 \approx \boxed{0.618} \end{aligned}

Rocco Dalto
Nov 30, 2020

In the diagram above the lengths are filled in by noting that two tangents to a circle from an outside point are equal in length.

A A B C = r 2 ( 2 ( a + b ) + 2 x ) = r ( a + b + x ) A_{\triangle{ABC}} = \dfrac{r}{2}(2(a + b) + 2x) = r(a + b + x)

Using Heron's formula for A B C \triangle{ABC} we have:

s = a + b + x A A B C = ( a b ) ( a + b + x ) x = r ( a + b + x ) s = a + b + x \implies A_{\triangle{ABC}} = \sqrt{(ab)(a + b + x) x} = r(a + b + x) \implies

( a + b ) a b x + a b x 2 = ( a + b ) 2 r 2 + 2 ( a + b ) r 2 x + r 2 x 2 (a + b)abx + abx^2 = (a + b)^2r^2 + 2(a + b)r^2x + r^2x^2 \implies

( a b r 2 ) x 2 + ( a + b ) ( a b 2 r 2 ) x ( a + b ) 2 r 2 = 0 (ab - r^2)x^2 + (a + b)(ab - 2r^2)x - (a + b)^2r^2 = 0 \implies

x = ( a + b ) r 2 a b r 2 > 0 x = \dfrac{(a + b)r^2}{ab - r^2} > 0 dropping the root ( a + b ) < 0 -(a + b) < 0 A A B C = a b ( a + b ) r a b r 2 \implies A_{\triangle{ABC}} = \dfrac{ab(a + b)r}{ab - r^2} \implies

A A B C a + b = a b r a b r 2 = a b \dfrac{A_{\triangle{ABC}}}{a + b} = \dfrac{abr}{ab - r^2} = \sqrt{ab} \implies

( a b ) 1 2 r 2 + a b r ( a b ) 3 2 = 0 r = a b ( ± 5 1 2 ) (ab)^{\frac{1}{2}}r^2 + abr - (ab)^{\frac{3}{2}} = 0 \implies r = \sqrt{ab}(\dfrac{\pm\sqrt{5} - 1}{2})

r > 0 r = a b ( 5 1 2 ) = a b ( ϕ 1 ) r > 0 \implies r = \sqrt{ab}(\dfrac{\sqrt{5} - 1}{2}) = \sqrt{ab}(\phi - 1) \implies

r a b = ϕ 1 0.6180339887498948 \dfrac{r}{\sqrt{ab}} = \phi - 1 \approx \boxed{0.6180339887498948} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...