An algebra problem by A Former Brilliant Member

Algebra Level 3

i = 0 23 ( 1 7 2 i + 1 6 2 i ) = 1 7 x 1 6 x \large \prod _{i=0}^{23} \left(17^{2^i}+16^{2^i}\right) =17^x-16^x

Solve for an value of x x .


The answer is 16777216.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

X X
Dec 9, 2018

The left side is equal to

( 17 + 16 ) ( 1 7 2 + 1 6 2 ) ( 1 7 4 + 1 6 4 ) . . . ( 1 7 8388608 + 1 6 8388608 ) (17+16)(17^2+16^2)(17^4+16^4)...(17^{8388608}+16^{8388608})

We can times a ( 17 16 ) (17-16) to the LHS, so it becomes

( 17 16 ) ( 17 + 16 ) ( 1 7 2 + 1 6 2 ) ( 1 7 4 + 1 6 4 ) . . . ( 1 7 8388608 + 1 6 8388608 ) {\color{#3D99F6}(17-16)(17+16)}(17^2+16^2)(17^4+16^4)...(17^{8388608}+16^{8388608})

= ( 1 7 2 1 6 2 ) ( 1 7 2 + 1 6 2 ) ( 1 7 4 + 1 6 4 ) . . . ( 1 7 8388608 + 1 6 8388608 ) ={\color{#3D99F6}(17^2-16^2)(17^2+16^2)}(17^4+16^4)...(17^{8388608}+16^{8388608})

= ( 1 7 4 1 6 4 ) ( 1 7 4 + 1 6 4 ) ( 1 7 8 + 1 6 8 ) . . . ( 1 7 8388608 + 1 6 8388608 ) ={\color{#3D99F6}(17^4-16^4)(17^4+16^4)}(17^8+16^8)...(17^{8388608}+16^{8388608})

\vdots

= 1 7 16777216 1 6 16777216 =17^{16777216}-16^{16777216}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...