This problem's question is What is the minimum distance between these two curves?
For those that just want an easy solved problem: the answer is 1.
Curve 1: , a radius 1 circle centered a {0,0}.
Curve 2: , a radius 1 circle centered at {3,0}.
Just looking at the situation and know the properties of circles will give you the answer.
Try doing it "I do not know the easy way." Use calculus and the first and second derivatives of the Euclidean distance. I worked it out that way in the solution.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
The Euclidean distance, using u as the parameter on the first curve and v as the parameter on the second curve, simplifies to:
expr = ( − sin ( u ) − cos ( 6 1 ( π − 6 v ) ) ) 2 + ( − cos ( u ) − sin ( 6 1 ( π − 6 v ) ) − 3 ) 2
∂ u ∂ expr = 2 sin ( u − v + 6 π ) + 6 cos ( u ) + 6 sin ( 6 1 ( π − 6 v ) ) + 1 1 cos ( u − v + 6 π ) − 3 sin ( u )
∂ u ∂ u ∂ 2 expr = 2 ( 2 sin ( u − v + 6 π ) + 6 cos ( u ) + 6 sin ( 6 1 ( π − 6 v ) ) + 1 1 ) 3 / 2 − 4 0 sin ( u − v + 6 π ) − 6 sin ( 2 u − v + 6 π ) + sin ( − 2 u + 2 v + 6 π ) + 6 ( sin ( − u + 2 v + 6 π ) − 3 sin ( 6 1 ( π − 6 ( u + v ) ) ) − 5 ) − 7 2 cos ( u ) − 9 cos ( 2 u ) + 9 3 sin ( v ) − 9 cos ( v )
∂ v ∂ expr = − 2 sin ( u − v + 6 π ) + 6 cos ( u ) + 6 sin ( 6 1 ( π − 6 v ) ) + 1 1 cos ( u − v + 6 π ) + 3 cos ( 6 1 ( π − 6 v ) )
∂ v ∂ v ∂ 2 expr = 2 ( 2 sin ( u − v + 6 π ) + 6 cos ( u ) + 6 sin ( 6 1 ( π − 6 v ) ) + 1 1 ) 3 / 2 − 4 0 sin ( u − v + 6 π ) − 6 sin ( 2 u − v + 6 π ) + sin ( − 2 u + 2 v + 6 π ) + 6 ( sin ( − u + 2 v + 6 π ) − 3 sin ( 6 1 ( π − 6 ( u + v ) ) ) − 5 ) − 1 8 cos ( u ) + 9 sin ( 2 v + 6 π ) − 7 2 sin ( 6 1 ( π − 6 v ) )
∂ u ∂ v ∂ 2 expr = 4 ( 2 sin ( u − v + 6 π ) + 6 cos ( u ) + 6 sin ( 6 1 ( π − 6 v ) ) + 1 1 ) 3 / 2 3 sin ( 2 ( u − v ) ) + 3 3 sin ( u − 2 v ) + 1 3 cos ( u − v ) − cos ( 2 ( u − v ) ) + 3 cos ( 2 u − v ) + 9 cos ( u + v ) − 3 cos ( u − 2 v ) − 3 ( 2 2 cos ( u ) + 3 cos ( 2 u ) + 9 ) sin ( v ) + 2 3 sin ( u ) ( 3 cos ( u ) + 2 ) cos ( v ) + 1 8 cos ( u ) + 9 cos ( v ) + 6
Depending the needed accuracy and whether you know how to solve such equations symbolically, solve these equations for u and v over R :
du = 0 ∧ dv = 0 ∧ 0 ≤ u < 2 π ∧ 0 ≤ v < 2 π
For most such problems, a numerical solution to the equations is sufficient.
The critical points are: { u → 0 , v → 3 2 π } , { u → 0 , v → 3 5 π } , { u → π , v → 3 2 π } , { u → π , v → 3 5 π } .
identify : { duu , dvv , duv } → Block [ { D = duu dvv − duv 2 } , Which [ D > 0 ∧ duu > 0 , Minimum , D > 0 ∧ duu < 0 , Maximum , D < 0 , Saddle , True , Unknown ] ]
{ { 0 , 3 2 π } , 3 , Saddle } { { 0 , 3 5 π } , 5 , Maximum } { { π , 3 2 π } , 1 , Minimum } { { π , 3 5 π } , 3 , Saddle }
As you may see the minimum is 1. Of course many people do not bother with the second derivative test and sort the extrema by eye. Also, sometimes, higher derivatives are needed .