FIITJEE A.I.T.S mains level

Algebra Level 4

Given that
i) a , b , c a,b,c follows an arithmetic progression.
ii) b , c , d b,c,d follows a geometric progression.
iii) c , d , e c,d,e follows a harmonic progression.

Then a , c , e a,c,e follows a:

None of these choices Harmonic progression Geometric progression Arithmetic progression

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Akshat Sharda
Oct 16, 2015

a,b,c are in A.P. 2 b = a + c b,c,d are in G.P. c 2 = b d c,d,e are in H.P. 2 d = 1 c + 1 e 2 d = 1 c + 1 e 2 c 2 b = c + e c e 2 b c = c + e e a + c c = c + e e c 2 = a e Therefore, a,c,e are in G.P. \text{a,b,c are in A.P.}\Rightarrow 2b=a+c \\ \text{b,c,d are in G.P.}\Rightarrow c^{2}=b \cdot d \\ \text{c,d,e are in H.P.}\Rightarrow \frac{2}{d}=\frac{1}{c}+\frac{1}{e} \\ \Rightarrow \frac{2}{d}=\frac{1}{c}+\frac{1}{e}\Rightarrow \frac{2}{\frac{c^{2}}{b}}=\frac{c+e}{ce} \\ \Rightarrow \frac{2b}{c}=\frac{c+e}{e}\Rightarrow \frac{a+c}{c}=\frac{c+e}{e} \\ \Rightarrow c^{2}=ae \Rightarrow \text{Therefore, a,c,e are in G.P.}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...