This quiz is the LIMITing factor of our knowledge

Calculus Level 2

Evaluate lim x a x 2 a 2 ln ( x 2 a 2 + 1 ) \large \lim\limits_{x\to a}\frac{x^2-a^2}{\ln(x^2-a^2+1)}


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

5 solutions

Let u = x 2 a 2 u=x^2-a^2 . Then by Maclaurin series :

lim u 0 u 1 + u = lim u 0 u u u 2 2 + u 3 3 for u < 1 = lim u 0 1 1 u 2 + u 2 3 Divide up and down by u = 1 \begin{aligned} \lim_{u \to 0} \frac u{1+u} & = \lim_{u \to 0} \frac u{u - \frac {u^2}2+ \frac {u^3}3 - \cdots } & \small \blue{\text{for }|u| < 1} \\ & = \lim_{u \to 0} \frac 1{1 - \frac u2+ \frac {u^2}3 - \cdots } & \small \blue{\text{Divide up and down by }u} \\ & = \boxed 1 \end{aligned}

Pi Han Goh
Aug 3, 2020

Let y = x 2 a 2 y = x^2-a^2 . Then as x a x\to a , y 0 y\to 0 . The limit becomes lim y 0 y ln ( y + 1 ) . \lim_{y\to0} \frac y{\ln(y+1)} . Apply L'Hôpital's rule gives lim y 0 1 1 / ( y + 1 ) = lim y 0 ( y + 1 ) = 1 . \lim_{y\to0} \frac1{1/(y+1)} = \lim_{y\to0} (y+1) = \boxed1.

James Watson
Aug 3, 2020

We can use L'Hopital's Rule here because when we plug a a in we get a 0 0 \Large \frac{0}{0} situation: lim x a x 2 a 2 ln ( x 2 a 2 + 1 ) lim x a d d x ( x 2 a 2 ) d d x ( ln ( x 2 a 2 + 1 ) ) = lim x a 2 x 2 x x 2 a 2 + 1 = lim x a x 2 a 2 + 1 = a 2 a 2 + 1 = 1 \begin{aligned} \lim\limits_{x\to a}\frac{x^2-a^2}{\ln(x^2-a^2+1)} \Longrightarrow \lim\limits_{x\to a}\frac{\frac{d}{dx}(x^2-a^2)}{\frac{d}{dx}(\ln(x^2-a^2+1))} &= \lim\limits_{x\to a}\frac{\sout{2x}}{\frac{\sout{2x}}{x^2-a^2+1}} \\ &= \lim\limits_{x\to a} x^2-a^2+1 \\ &= a^2 - a^2 + 1 = \boxed{1} \end{aligned}

We have the standard limit :

lim h 0 h ln ( 1 + h ) = lim h 0 ln ( 1 + h ) h = 1 \displaystyle \lim_{h\to 0} \dfrac {h}{\ln (1+h)}=\displaystyle \lim_{h\to 0} \dfrac {\ln(1+h)}{h}=1

Letting x 2 a 2 = h x^2-a^2=h , we get the required limit as 1 \boxed 1 .

Elijah L
Aug 3, 2020

"Fakesolve" solution:

Let a = 0 a = 0 . The limit simplifies to lim x 0 x 2 ln ( x 2 + 1 ) \displaystyle \lim_{x\rightarrow 0} \frac{x^2}{\ln(x^2+1)} . Directly substituting x = 0 x=0 results in an indeterminate form where we can use L'Hopital's Rule. Then:

lim x 0 x 2 ln ( x 2 + 1 ) = L. H. lim x 0 2 x ( 2 x x 2 + 1 ) = lim x 0 x 2 + 1 = 1 \newcommand\myeq{\stackrel{\mathclap{\mbox{L. H.}}}{=}} \begin{aligned} \displaystyle \lim_{x\rightarrow 0} \frac{x^2}{\ln(x^2+1)} \text{ } &\myeq \text{ } \lim_{x\rightarrow 0} \displaystyle \frac{2x}{\left(\frac{2x}{x^2+1}\right)}\\ &= \displaystyle \lim_{x\rightarrow 0} x^2 + 1\\ &= \boxed{1} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...