This seems easy

gcd ( 2 3 0 10 2 , 2 3 0 45 2 ) = 2 x 2 \gcd( 2^{30^{10}}-2,2^{30^{45}}-2)=2^{x}-2

If x = a n b n c n x=a^n b^n c^n where a , b a,b and c c are prime integers, find a + b + c a+b+c .


Source: PUMAC


The answer is 10.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Akshat Sharda
Mar 15, 2016

Theorem: For natural a , m , n a,m,n ,

gcd ( a m 1 , a n 1 ) = a gcd ( m , n ) 1 \gcd(a^m-1,a^n-1)=a^{\gcd(m,n)}-1


gcd ( 2 3 0 10 2 , 2 3 0 45 2 ) 2 gcd ( 2 3 0 10 1 1 , 2 3 0 45 1 1 ) 2 [ 2 gcd ( 3 0 10 1 , 3 0 45 1 ) 1 ] 2 [ 2 3 0 gcd ( 10 , 45 ) 1 1 ] 2 [ 2 3 0 5 1 1 ] = 2 3 0 5 2 x = 3 0 5 = 2 5 3 5 5 5 2 + 3 + 5 = 10 \gcd( 2^{30^{10}}-2,2^{30^{45}}-2) \\ 2\gcd( 2^{30^{10}-1} -1, 2^{30^{45}-1}-1) \\ 2\left[ 2^{\gcd( 30^{10}-1,30^{45}-1 )}-1 \right] \\ 2\left[ 2^{30^{\gcd(10,45)}-1}-1 \right] \\ 2\left[ 2^{30^{5}-1}-1 \right]=2^{30^{5}}-2 \\ x=30^{5}=2^53^55^5\Rightarrow 2+3+5=\boxed{10}


Bonus: Prove the theorem.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...