This seems familiar.

Algebra Level 2

What is the sum of all the real roots of the equation

( 10 ) 2 5 x 7 ( 10 ) x + ( 10 ) 4 x = 0 (\sqrt{10})25^{x}-7(10)^{x} + (\sqrt{10})4^{x} = 0 ?

(I did not come up with this question. This is also from the entrance exam of the Computer POSN camp in Thailand.)


The answer is 0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Jaya Yarlagadda
Apr 3, 2014

Rewrite the equation as 10 ( 5 x ) 2 7 × ( 5 x ) × ( 2 x ) + 10 ( 2 x ) 2 = 0 \sqrt { 10 } { ({ 5 }^{ x }) }^{ 2 }-7\times ({ 5 }^{ x })\times ({ 2 }^{ x })+\sqrt { 10 } { ({ 2 }^{ x }) }^{ 2 }=0 . This is a quadratic equation in 5 x { 5 }^{ x } . Solve for 5 x { 5 }^{ x } . 5 x = 7 × 2 x ± 49 × 2 2 x 40 × 2 2 x 2 10 = 7 × 2 x ± 3 × 2 x 2 10 { 5 }^{ x }=\frac { 7\times { 2 }^{ x }\quad \pm \quad \sqrt { 49\times { 2 }^{ 2x }-40\times { 2 }^{ 2x } } }{ 2\sqrt { 10 } } \quad =\quad \frac { 7\times { 2 }^{ x }\quad \pm \quad 3\times { 2 }^{ x } }{ 2\sqrt { 10 } } . Solutions are 5 x = 2 x 5 2 a n d 5 x = 2 x × 2 5 i . e x = 1 2 , 1 2 { 5 }^{ x }=\frac { { 2 }^{ x }\sqrt { 5 } }{ \sqrt { 2 } } \quad and\quad { 5 }^{ x }=\frac { { 2 }^{ x }\times \sqrt { 2 } }{ \sqrt { 5 } } i.e\quad \quad x=\cfrac { 1 }{ 2 } ,-\cfrac { 1 }{ 2 } . Hence Sum of Roots= 0

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...