This should be easy...

Algebra Level 3

( 2 x 2 x 2 ) 2 + 1 + 1 ( 2 x 2 x 2 ) 2 + 1 1 = ( 2 + 1 2 1 ) 2 \large \dfrac{\sqrt{(2^x - 2^{-x - 2})^2 + 1} + 1}{\sqrt{(2^x - 2^{-x - 2})^2 + 1} - 1} = \left(\dfrac{2^\square + 1}{2^\square - 1}\right)^2

Which of the following expression should be put in the box (assuming x x is real)?

x x x 2 x - 2 x + 2 x + 2 x + 1 x + 1 A different expression. x 1 x - 1

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Jan 29, 2019

X = ( 2 x 2 x 2 ) 2 + 1 + 1 ( 2 x 2 x 2 ) 2 + 1 1 Multiply up and down by 2 = ( 2 x + 1 2 ( x + 1 ) ) 2 + 4 + 2 ( 2 x + 1 2 ( x + 1 ) ) 2 + 4 2 = 2 2 ( x + 1 ) 2 + 2 2 ( x + 1 ) + 4 + 2 2 2 ( x + 1 ) 2 + 2 2 ( x + 1 ) + 4 2 = 2 2 ( x + 1 ) + 2 + 2 2 ( x + 1 ) + 2 2 2 ( x + 1 ) + 2 + 2 2 ( x + 1 ) 2 = ( 2 x + 1 + 2 ( x + 1 ) ) 2 + 2 ( 2 x + 1 + 2 ( x + 1 ) ) 2 2 = 2 x + 1 + 2 ( x + 1 ) + 2 2 x + 1 + 2 ( x + 1 ) 2 Multiply up and down by 2 x + 1 = 2 2 ( x + 1 ) + 2 2 x + 1 + 1 2 2 ( x + 1 ) 2 2 x + 1 + 1 = ( 2 x + 1 + 1 2 x + 1 1 ) 2 \begin{aligned} X & = \frac {\sqrt{(2^x-2^{-x-2})^2+1}+1}{\sqrt{(2^x-2^{-x-2})^2+1}-1} & \small \color{#3D99F6} \text{Multiply up and down by }2 \\ & = \frac {\sqrt{(2^{x+1}-2^{-(x+1)})^2+4}+2}{\sqrt{(2^{x+1}-2^{-(x+1)})^2+4}-2} \\ & = \frac {\sqrt{2^{2(x+1)}-2+2^{-2(x+1)}+4}+2}{\sqrt{2^{2(x+1)}-2+2^{-2(x+1)}+4}-2} \\ & = \frac {\sqrt{2^{2(x+1)}+2+2^{-2(x+1)}}+2}{\sqrt{2^{2(x+1)}+2+2^{-2(x+1)}}-2} \\ & = \frac {\sqrt{(2^{x+1}+2^{-(x+1)})^2}+2}{\sqrt{(2^{x+1}+2^{-(x+1)})^2}-2} \\ & = \frac {2^{x+1}+2^{-(x+1)}+2}{2^{x+1}+2^{-(x+1)}-2} & \small \color{#3D99F6} \text{Multiply up and down by }2^{x+1} \\ & = \frac {2^{2(x+1)} + 2 \cdot 2^{x+1} +1}{2^{2(x+1)} - 2 \cdot 2^{x+1} +1} \\ & = \left(\frac {2^{\boxed{x+1}}+1}{2^{\boxed{x+1}}-1}\right)^2 \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...