This should be easy! Right? Part - 2

Geometry Level 5

In a quadrilateral A B C D ABCD , A B = 6 AB = 6 c m cm , cos A D B = 7 8 \cos \angle ADB = \frac{7}{8} , sin B D C = 15 8 \sin \angle BDC = \frac{\sqrt{15}}{8} , cos D C A = 11 16 \cos \angle DCA = \frac{11}{16} and sin A C B = 15 8 \sin \angle ACB = \frac{\sqrt{15}}{8} .

Find C D CD (in cm \text{cm} ).

Try Part-1 and Part-3 also.


The answer is 12.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

A D B = C o s 1 7 8 = α = S i n 1 15 8 = B D C = A C B . A B C D c y c l i c . C A B = α , B C = 6. L e t D C A = C o s 1 11 16 = s a y β . S i n C B D = S i n ( 2 α + β ) . A p p l y i n g S i n L a w , D C S i n β = 6 S i n α . P u t t i n g t h e V a l u e s , C D = 12 c m . \angle ADB=Cos^{-1}\frac 7 8=\alpha=Sin^{-1}\frac{\sqrt{15}} 8=\angle BDC=\angle ACB. ~\therefore ~ABCD ~cyclic.\\ \therefore ~\angle CAB=\alpha, ~ \implies ~BC=6. ~~~ Let ~\angle DCA=Cos^{-1}\frac{11}{16}= say ~ \beta.\\ SinCBD=Sin(2*\alpha+\beta). ~~\\ Applying ~Sin ~ Law, ~\dfrac{DC}{Sin\beta}=\dfrac 6 {Sin\alpha}.\\ Putting ~ the ~ Values, CD=12 cm.

Akshay Yadav
Jan 28, 2016

We know,

cos 2 A C B = 1 sin 2 A C B \cos^{2} \angle ACB = 1 - \sin^{2} \angle ACB

cos 2 A C B = 1 15 64 \cos^{2} \angle ACB = 1 - \frac{15}{64}

cos 2 A C B = 49 64 \cos^{2} \angle ACB = \frac{49}{64}

cos A C B = 7 8 \cos \angle ACB = \frac{7}{8}

Notice cos A C B = cos A D B \cos \angle ACB = \cos \angle ADB ,

Hence,

A C B = A D B \angle ACB = \angle ADB

It is sufficient to prove that quadrilateral A B C D ABCD is cyclic.

After that we can easily apply c o s i n e cosine rule,etc.

Ahmad Saad
Jan 28, 2016

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...