The square above has a side length of 10. Semicircles and quarter circles are inscribed inside the square.
Calculate the blue area.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Blue Area = Red Area - Yellow Area
let S c = Area of Sector (CEA)
S b = Area of Sector (BAE)
k = Area of Kite (ABEC)
x = ∣ D B ∣ y = ∣ A D ∣ △ B A D ∼ △ A C D ⇒ y x = 1 0 5 ⇒ x = 2 y
△ B A D is right angled triangle ⇒ y 2 + 4 y 2 = 2 5 ⇒ y = 2 5 ⇒ ∣ A E ∣ = 4 5
∣ B C ∣ = 1 0 0 + 2 5 = 5 5
∠ C = cos − 1 ( 2 × 1 0 × 1 0 1 0 2 + 1 0 2 − ( 4 5 ) 2 ) = cos − 1 ( 5 3 ) ∠ B = cos − 1 ( 2 × 5 × 5 5 2 + 5 2 − ( 4 5 ) 2 ) = cos − 1 ( 5 − 3 ) = 1 8 0 − cos − 1 ( 5 3 ) S c = 1 0 0 π 3 6 0 cos − 1 ( 5 3 ) S b = 2 5 π 3 6 0 1 8 0 − cos − 1 ( 5 3 ) = 2 2 5 π − 2 5 π 3 6 0 cos − 1 ( 5 3 ) k = 2 1 ( 4 5 ) ( 5 5 ) = 5 0
Red Area = S c + S b − k = 1 0 0 π 3 6 0 cos − 1 ( 5 3 ) + 2 2 5 π − 2 5 π 3 6 0 cos − 1 ( 5 3 ) − 5 0 = 2 2 5 π + 7 5 π 3 6 0 cos − 1 ( 5 3 ) − 5 0
Yellow Area= 2* Area of quarter circle - Area of square
Yellow Area= 2 ( 4 2 5 π ) − 5 2 = 2 2 5 π − 2 5
Blue Area = 2 2 5 π + 7 5 π 3 6 0 cos − 1 ( 5 3 ) − 5 0 − ( 2 2 5 π − 2 5 ) = 7 5 π 3 6 0 cos − 1 ( 5 3 ) − 2 5 ≈ 9 . 7 7 3 5 7