Calculate the blue area

Geometry Level 5

The square above has a side length of 10. Semicircles and quarter circles are inscribed inside the square.

Calculate the blue area.


The answer is 9.77357.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Hassan Abdulla
Feb 3, 2018

Blue Area = Red Area - Yellow Area

let S c S_{c} = Area of Sector (CEA)

S b S_{b} = Area of Sector (BAE)

k = Area of Kite (ABEC)

x = D B y = A D B A D A C D x y = 5 10 x = y 2 x=\left| DB \right| \\ y=\left| AD \right| \\ \triangle BAD\sim \triangle ACD\Rightarrow \frac { x }{ y } =\frac { 5 }{ 10 } \Rightarrow x=\frac { y }{ 2 }

B A D \triangle BAD is right angled triangle y 2 + y 2 4 = 25 y = 2 5 A E = 4 5 \Rightarrow y^{ 2 }+\frac { y^{ 2 } }{ 4 } =25\Rightarrow y=2\sqrt { 5 } \Rightarrow \left| AE \right| =4\sqrt { 5 }

B C = 100 + 25 = 5 5 \left| BC \right| =\sqrt { 100 + 25 }=5\sqrt{5}

C = cos 1 ( 1 0 2 + 1 0 2 ( 4 5 ) 2 2 × 10 × 10 ) = cos 1 ( 3 5 ) B = cos 1 ( 5 2 + 5 2 ( 4 5 ) 2 2 × 5 × 5 ) = cos 1 ( 3 5 ) = 180 cos 1 ( 3 5 ) S c = 100 π cos 1 ( 3 5 ) 360 S b = 25 π 180 cos 1 ( 3 5 ) 360 = 25 π 2 25 π cos 1 ( 3 5 ) 360 k = 1 2 ( 4 5 ) ( 5 5 ) = 50 \angle C=\cos ^{ -1 }{ \left( \frac { 10^{ 2 }+10^{ 2 }-\left( 4\sqrt { 5 } \right) ^{ 2 } }{ 2\times 10\times 10 } \right) } =\cos ^{ -1 }{ \left( \frac { 3 }{ 5 } \right) } \\ \angle B=\cos ^{ -1 }{ \left( \frac { 5^{ 2 }+5^{ 2 }-\left( 4\sqrt { 5 } \right) ^{ 2 } }{ 2\times 5\times 5 } \right) } =\cos ^{ -1 }{ \left( \frac { -3 }{ 5 } \right) } =180-\cos ^{ -1 }{ \left( \frac { 3 }{ 5 } \right) } \\ S_{ c }=100\pi \frac { \cos ^{ -1 }{ \left( \frac { 3 }{ 5 } \right) } }{ 360 } \\ S_{ b }=25\pi \frac { 180-\cos ^{ -1 }{ \left( \frac { 3 }{ 5 } \right) } }{ 360 } =\frac { 25\pi }{ 2 } -25\pi \frac { \cos ^{ -1 }{ \left( \frac { 3 }{ 5 } \right) } }{ 360 } \\ \\ k=\frac { 1 }{ 2 } \left( 4\sqrt { 5 } \right) \left( 5\sqrt { 5 } \right) =50

Red Area = S c + S b k = 100 π cos 1 ( 3 5 ) 360 + 25 π 2 25 π cos 1 ( 3 5 ) 360 50 = 25 π 2 + 75 π cos 1 ( 3 5 ) 360 50 S_{c} + S_{b} - k =100\pi \frac { \cos ^{ -1 }{ \left( \frac { 3 }{ 5 } \right) } }{ 360 } +\frac { 25\pi }{ 2 } -25\pi \frac { \cos ^{ -1 }{ \left( \frac { 3 }{ 5 } \right) } }{ 360 } -50=\frac { 25\pi }{ 2 } +75\pi \frac { \cos ^{ -1 }{ \left( \frac { 3 }{ 5 } \right) } }{ 360 } -50

Yellow Area= 2* Area of quarter circle - Area of square

Yellow Area= 2 ( 25 π 4 ) 5 2 = 25 π 2 25 2\left( \frac { 25\pi }{ 4 } \right) -{ 5 }^{ 2 }=\frac { 25\pi }{ 2 } -25

Blue Area = 25 π 2 + 75 π cos 1 ( 3 5 ) 360 50 ( 25 π 2 25 ) = 75 π cos 1 ( 3 5 ) 360 25 9.77357 \frac { 25\pi }{ 2 } +75\pi \frac { \cos ^{ -1 }{ \left( \frac { 3 }{ 5 } \right) } }{ 360 } -50-\left( \frac { 25\pi }{ 2 } -25 \right) =75\pi \frac { \cos ^{ -1 }{ \left( \frac { 3 }{ 5 } \right) } }{ 360 } -25\approx 9.77357

Niranjan Khanderia - 2 years, 11 months ago
Ajit Athle
Feb 11, 2018

Take O as the origin, OA as the x-axis, OB - the y-axis; then G:(4,8) Yellow Area =(25-2(25-25Pi/4)), Red Area (By integration) =15.226 cm² ::: Integral of [(25 -x^2)^(1/2)+5 - (100 -(x-10)^2)^(1/2)] from 0 to 4. Then the required blue area = Semi-circle on OB - Yellow Area - Red Area =25Pi/2 - (15.226) - (25-2(25-25Pi/4)) = 9.774 cm²

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...