What is this function?

( k = 1 13 k k k ! ) m o d 28752 \large{\left( \prod _{ k=1 }^{ 13 }{ \frac { { k }^{ k } }{ k! } } \right) \mod{28752}}


The answer is 7872.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Lu Chee Ket
Nov 17, 2015

1 / 1

2 2 / 2

3 3 3 / 3 2

4 4 4 4 / 4 3 2

5 5 5 5 5 / 5 4 3 2

6 6 6 6 6 6 / 6 5 4 3 2

7 7 7 7 7 7 7 / 7 6 5 4 3 2

8 8 8 8 8 8 8 8 / 8 7 6 5 4 3 2

9 9 9 9 9 9 9 9 9 / 9 8 7 6 5 4 3 2

10 10 10 10 10 10 10 10 10 10 / 10 9 8 7 6 5 4 3 2

11 11 11 11 11 11 11 11 11 11 11 / 11 10 9 8 7 6 5 4 3 2

12 12 12 12 12 12 12 12 12 12 12 12 / 12 11 10 9 8 7 6 5 4 3 2

13 13 13 13 13 13 13 13 13 13 13 13 13 / 13 12 11 10 9 8 7 6 5 4 3 2

Divided by 2 2 2 2 3 599

Converted into

1
2
3
4
5
6
                            10  10          
        11  11  11  11  11  11  11  11      
    3   3   3   3   3   3   2   2   6   6   
13  13  13  13  13  13  13  13  13  13  13  13

Divided by 2    2   2   2   3   599                     

209706417310526095716965894400 MOD 28752 = 7872

Note that (4368883693969293660770122800 x 2^4 x 3) MOD (2^4 x 3 x 599) = 7872 but 4368883693969293660770122800 MOD 599 = 164

164 x 2^4 x 3 = 7872

This solution made no sense.

Pi Han Goh - 5 years, 5 months ago

Log in to reply

please post your solution or give a hint

Dev Sharma - 5 years, 5 months ago

Log in to reply

Factor LHS and RHS completely, apply Chinese Remainder Theorem . It's a tedious process.

Pi Han Goh - 5 years, 5 months ago

Please learn latex it will help a lot of people.

Department 8 - 5 years, 6 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...