This time it's an inverse

Calculus Level 3

The integral 0 100 arctan x d x \int_{0}^{100} \lfloor \arctan x \rfloor dx can be expressed as α tan ( β ) \displaystyle \alpha - \tan (\beta) . What is α + β \displaystyle \alpha + \beta ?


The answer is 101.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Milly Choochoo
Oct 6, 2014

If you realize that arctan ( x ) \arctan(x) is never more than π 2 1.5707... \frac{\pi}{2}\approx 1.5707... , this problem is very easy.

Imgur Imgur

So the integral is just the area of the box, which has a length 100 tan ( 1 ) 100 - \tan(1) and height 1 1 . So the area is just 100 tan ( 1 ) 100-\tan(1) , so α + β \alpha + \beta is 101 \boxed{101} .

Yes this how I wanted it to get solved .You did it @Milly Choochoo

Abhishek Singh - 6 years, 8 months ago
Ronak Agarwal
Oct 6, 2014

We will split the integral into two parts :

I = 0 t a n ( 1 ) t a n 1 ( x ) d x + t a n ( 1 ) 100 t a n 1 ( x ) d x I=\int _{ 0 }^{ tan(1) }{ \left\lfloor { tan }^{ -1 }(x) \right\rfloor dx } +\int _{ tan(1) }^{ 100 }{ \left\lfloor { tan }^{ -1 }(x) \right\rfloor dx }

Now for 0 x t a n ( 1 ) 0 \le x \le tan(1)

0 t a n 1 ( x ) 1 \Rightarrow 0 \le {tan}^{-1}(x) \le 1

t a n 1 ( x ) = 0 \Rightarrow \left\lfloor {tan}^{-1}(x) \right\rfloor = 0

Also for t a n ( 1 ) x 100 tan(1) \le x \le 100

1 t a n 1 ( x ) t a n 1 ( 100 ) 2 \Rightarrow 1 \le {tan}^{-1}(x) \le {tan}^{-1}(100) \le 2

t a n 1 ( x ) = 1 \Rightarrow \left\lfloor {tan}^{-1}(x) \right\rfloor = 1

I = 0 t a n ( 1 ) 0 d x + t a n ( 1 ) 100 1 d x \Rightarrow I=\int _{ 0 }^{ tan(1) }{ 0dx } +\int _{ tan(1) }^{ 100 }{ 1dx }

I = 100 t a n ( 1 ) I=100-tan(1)

α = 100 , β = 1 \Rightarrow \alpha=100, \beta=1

α + β = 101 \boxed{\alpha+\beta=101}

Nice,used same method.

Ayush Verma - 6 years, 7 months ago
Michael Mendrin
Oct 6, 2014

Just integrate it directly, as follows

0 100 ( 1 2 + A r c T a n ( x ) 1 2 π i L o g ( e 2 i π A r c T a n ( x ) ) ) d x = \displaystyle \int _{ 0 }^{ 100 }{ \left( -\dfrac { 1 }{ 2 } +ArcTan\left( x \right) -\dfrac { 1 }{ 2\pi } iLog\left( -{ e }^{\displaystyle -2i\pi ArcTan\left( x \right) } \right) \right) } dx=

100 T a n ( 1 ) 100-Tan\left( 1 \right)

ta-da!

OOPS! it's not " 100 arctan 1 100 - \arctan 1 "!

Abhishek Singh - 6 years, 8 months ago

Log in to reply

Oh, sorry, typo. Changed it from ArcTan(1) to Tan(1). Thankee. But it doesn't change the integral. There's a method for directly integrating the floor of a function.

Obviously, if ArcTan(x)=1, where x is the jump, then Tan(1)=x. Doh!

Michael Mendrin - 6 years, 8 months ago
Kishore S. Shenoy
Nov 14, 2015

0 100 tan 1 x d x = 0 tan 1 tan 1 x d x + tan 1 100 tan 1 x d x = 0 tan 1 0 d x + tan 1 100 1 d x = 100 tan 1 98.44259 0 100 tan 1 x d x = 100 tan 1 c \begin{aligned}\displaystyle \int\limits_0^{100} \left \lfloor \tan^{-1} x\right \rfloor \mathrm{d}x&=\int\limits_0^{\tan 1} \left \lfloor \tan^{-1} x\right \rfloor \mathrm{d}x + \int\limits_{\tan 1}^{100} \left \lfloor \tan^{-1} x\right \rfloor \mathrm{d}x \\&=\int\limits_0^{\tan 1} 0 \mathrm{d}x + \int\limits_{\tan 1}^{100} 1 \mathrm{d}x\\ &= 100 - \tan 1\\&\approx 98.44259\end{aligned}\\\huge \boxed{\displaystyle\int\limits_0^{100} \left \lfloor \tan^{-1} x\right \rfloor \mathrm{d}x = 100 - \tan 1^c}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...