Evaluate
4
s
i
n
1
0
∘
s
i
n
5
0
∘
s
i
n
7
0
∘
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
L A T E X version: 4 sin 1 0 ∘ sin 5 0 ∘ sin 7 0 ∘ = = = = = = = = cos 5 0 ∘ 4 sin 1 0 ∘ sin 7 0 ∘ sin 5 0 ∘ cos 5 0 ∘ cos ( 9 0 ∘ − 4 0 ∘ ) 2 sin 1 0 ∘ sin ( 9 0 ∘ − 2 0 ∘ ) sin 1 0 0 ∘ sin 4 0 ∘ 2 sin 1 0 ∘ cos 2 0 ∘ sin ( 9 0 ∘ + 1 0 ∘ ) sin 4 0 ∘ 2 sin 1 0 ∘ cos 2 0 ∘ cos 1 0 ∘ sin 4 0 ∘ sin 2 0 ∘ cos 2 0 ∘ 2 sin 4 0 ∘ 2 sin 2 0 ∘ cos 2 0 ∘ 2 sin 4 0 ∘ sin 4 0 ∘ 2 1
Its kind of a to be known thing that 4.sinx.sin(60-x).sin(60+x) = sin3x
Alternatively, just use the sum identities to derive the product identities (or just use the product identities directly) and reduce the problem to
2 1 − sin 7 0 ∘ + sin 1 1 0 ∘ = 2 1
firstly : 4(sin10)(sin50)(sin70),then you'll get the answer 0.5..since it want 3 decimal point just add 2 zero behind the 5 and it will be 0.500
Problem Loading...
Note Loading...
Set Loading...
First multiply cos50 to numerator n denominator [4sin10xsin70xsin50xcos50]/cos50 =[2sin10xsin(90-20)xsin100]/cos(90-40) =[2sin10xcos20xsin(90+10)]/sin40 =[2sin10xcos20xcos10]/sin40 =[sin20xcos20]/sin40 =[2sin20xcos20]/2sin40 =sin40/2sin40 =1/2