An algebra problem by Department 8

Algebra Level 5

1 1 × 2 × 9 + 1 4 × 3 × 16 + 1 9 × 4 × 25 + \large{\frac { 1 }{ 1\times 2\times 9 } +\frac { 1 }{ 4\times 3\times 16 } +\frac { 1 }{ 9\times 4\times 25 } +\cdots}

Let S S represent the infinite summation above. Find S 497 m o d 7 S^{-497} \mod{7}


The answer is 4.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Department 8
Oct 12, 2015

My solution is same as Chew-Seong Cheong , but a different approach:-

S = k = 1 1 ( k ) 2 ( k + 1 ) ( k + 2 ) 2 = k = 2 1 ( k 1 ) 2 ( k ) ( k + 1 ) 2 = k = 2 k [ ( k 1 ) ( k ) ( k + 1 ) ] 2 = 1 4 ( k = 2 ( 4 k [ ( k 1 ) ( k ) ( k + 1 ) ] 2 ) ) = 1 4 ( k = 2 ( 1 [ ( k 1 ) ( k ) ] 2 1 [ ( k ) ( k + 1 ) ] ) ) = 1 4 ( 1 1 × 2 2 1 2 2 × 3 2 + 1 2 2 × 3 2 ) S = 1 16 \large{S=\sum _{ k=1 }^{ \infty }{ \frac { 1 }{ { \left( k \right) }^{ 2 }\left( k+1 \right) { \left( k+2 \right) }^{ 2 } } } \\ =\sum _{ k=2 }^{ \infty }{ \frac { 1 }{ { \left( k-1 \right) }^{ 2 }\left( k \right) { \left( k+1 \right) }^{ 2 } } } \\ =\sum _{ k=2 }^{ \infty }{ \frac { k }{ { \left[ \left( k-1 \right) \left( k \right) \left( k+1 \right) \right] }^{ 2 } } } \\ =\frac { 1 }{ 4 } \left( \sum _{ k=2 }^{ \infty }{ \left( \frac { 4k }{ { \left[ \left( k-1 \right) \left( k \right) \left( k+1 \right) \right] }^{ 2 } } \right) } \right) \\ =\frac { 1 }{ 4 } \left( \sum _{ k=2 }^{ \infty }{ \left( \frac { 1 }{ { \left[ \left( k-1 \right) \left( k \right) \right] }^{ 2 } } -\frac { 1 }{ \left[ \left( k \right) \left( k+1 \right) \right] } \right) } \right) \\ =\frac { 1 }{ 4 } \left( \frac { 1 }{ 1\times { 2 }^{ 2 } } -\frac { 1 }{ { 2 }^{ 2 }\times { 3 }^{ 2 } } +\frac { 1 }{ { 2 }^{ 2 }\times { 3 }^{ 2 } } \cdots \cdots \cdots \right) \\ S=\frac { 1 }{ 16 } }

Now we have

S 497 = 16 497 2 497 ( m o d 7 ) { S }^{ -497 }={ 16 }^{ 497 }\equiv { 2 }^{ 497 }(\mod{7})

Now by Fermat's Little theorem

2 497 2 5 4 ( m o d 7 ) { 2 }^{ 497 }\equiv { 2 }^{ 5 }\equiv \boxed{4} (\mod{7})

Very nice way to do the telescope sum. One little typo, in deriving S, the second line from last, the denominator of the "-" term is missing a square, it should be [(k)(k+1)]^2.

Wei Chen - 4 years, 10 months ago

Done similarly!!

Shreyash Rai - 4 years, 10 months ago
Chew-Seong Cheong
Oct 12, 2015

S = k = 1 1 k 2 ( k + 1 ) ( k + 2 ) 2 = k = 1 ( 1 k ( k + 2 ) × 1 k ( k + 1 ) ( k + 2 ) ) = k = 1 [ 1 4 ( 1 k 1 k + 2 ) ( 1 k 2 k + 1 + 1 k + 2 ) ] = 1 4 k = 1 ( 1 k 2 2 k ( k + 1 ) + 1 k ( k + 2 ) 1 k ( k + 2 ) + 2 ( k + 1 ) ( k + 2 ) 1 ( k + 2 ) 2 ) = 1 4 k = 1 ( 1 k 2 1 ( k + 2 ) 2 2 [ 1 k ( k + 1 ) 1 ( k + 1 ) ( k + 2 ) ] ) = 1 4 ( k = 1 1 k 2 k = 1 1 ( k + 2 ) 2 2 [ k = 1 1 k ( k + 1 ) k = 1 1 ( k + 1 ) ( k + 2 ) ] ) = 1 4 ( k = 1 1 k 2 k = 3 1 k 2 2 [ k = 1 1 k ( k + 1 ) k = 2 1 k ( k + 1 ) ] ) = 1 4 ( 1 1 + 1 4 2 [ 1 2 ] ) = 1 16 \begin{aligned} S & = \sum_{k=1}^\infty \frac{1}{k^2(k+1)(k+2)^2} \\ & = \sum_{k=1}^\infty \left(\frac{1}{k(k+2)}\times \frac{1}{k(k+1)(k+2)}\right) \\ & = \sum_{k=1}^\infty \left[ \frac{1}{4} \left(\frac{1}{k} - \frac{1}{k+2} \right) \left(\frac{1}{k} - \frac{2}{k+1} + \frac{1}{k+2} \right) \right] \\ & = \frac{1}{4} \sum_{k=1}^\infty \left(\frac{1}{k^2} - \frac{2}{k(k+1)} + \frac{1}{k(k+2)} - \frac{1}{k(k+2)} + \frac{2}{(k+1)(k+2)} - \frac{1}{(k+2)^2} \right) \\ & = \frac{1}{4} \sum_{k=1}^\infty \left(\frac{1}{k^2} - \frac{1}{(k+2)^2} - 2 \left[ \frac{1}{k(k+1)} - \frac{1}{(k+1)(k+2)} \right] \right) \\ & = \frac{1}{4} \left( \sum_{k=1}^\infty \frac{1}{k^2} - \sum_{k=1}^\infty \frac{1}{(k+2)^2} - 2 \left[ \sum_{k=1}^\infty \frac{1}{k(k+1)} - \sum_{k=1}^\infty \frac{1}{(k+1)(k+2)} \right] \right) \\ & = \frac{1}{4} \left( \sum_{k=1}^\infty \frac{1}{k^2} - \sum_{k=3}^\infty \frac{1}{k^2} - 2 \left[ \sum_{k=1}^\infty \frac{1}{k(k+1)} - \sum_{k=2}^\infty \frac{1}{k(k+1)} \right] \right) \\ & = \frac{1}{4} \left( \frac{1}{1} + \frac{1}{4} - 2 \left[ \frac{1}{2} \right] \right) \\ & = \frac{1}{16} \end{aligned}

S 497 1 6 497 2 1988 2 2 8 662 4 ( 7 + 1 ) 662 4 ( m o d 7 ) \begin{aligned} \\ & \\ \Rightarrow S^{-497} & \equiv 16^{497} \equiv 2^{1988} \equiv 2^28^{662} \equiv 4(7+1)^{662} \equiv \boxed{4} \pmod{7} \end{aligned}

Nice and very easy-to understand solution

Department 8 - 5 years, 8 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...