Telescopic 2014

Calculus Level 4

S = r = 2 2014 [ ( 1 ) r r 2 + r + 1 r ! ] S=\sum_{r=2}^{2014} \left[(-1)^r \dfrac{r^2+r+1}{r!}\right]

The value of S S is of the form a + 1 b ! + 1 c ! a+\dfrac{1}{b!}+\dfrac{1}{c!} Where a , b a,b & c c are integers and a a & b b are co-prime.

Find 2 a + 2 b + c 4 \dfrac{2a+2b+c}{4}

  • Please avoid using Wolfram Alpha or any other CAS.


The answer is 1511.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Krishna Sharma
Oct 15, 2014

Let us seperate the original equation

r = 2 2014 ( 1 ) r ( r ( r + 1 ) + 1 r ! ) \displaystyle \sum_{r=2}^{2014}(-1)^{r} (\frac{ r(r + 1) + 1}{r!})

r = 2 2014 ( 1 ) r ( r ( r 1 ) ! + 1 ( r 1 ) ! + 1 r ! ) \displaystyle \sum_{ r=2}^{2014} (-1)^{r}( \frac{r}{(r - 1)!} + \frac{1}{(r - 1)!} + \frac{1}{r!})

r = 2 2014 ( 1 ) r ( r 1 + 1 ( r 1 ) ! + 1 ( r 1 ) ! + 1 r ! ) \displaystyle \sum_{r=2}^{2014} (-1)^{r} ( \frac{ r - 1 + 1}{(r - 1)!} + \frac{1}{(r - 1)!} + \frac{1}{r!})

Seperating(r -1 + 1), then we will solve the 2 equations seperately by V n V_n method

r = 2 2014 ( 1 ) r ( 1 ( r 2 ) ! + 1 ( r 1 ) ! ) + ( 1 ) r ( 1 ( r 1 ) ! + 1 r ! ) \displaystyle \sum_{r = 2}^{2014} (-1)^{r}(\frac{1}{(r-2)!} + \frac{1}{(r - 1)!}) + (-1)^{r}(\frac{1}{(r-1)!} + \frac{1}{r!})

All the terms will cancel out as put the values of 'r' except first and last term

We will now get

( 1 + 1 2013 ! ) + ( 1 + 1 2014 ! ) \displaystyle (1 + \frac{1}{2013!}) + (1 + \frac{1}{2014!})

you should specify about b and c as answer may change

Here

a = 2

b = 2013

c = 2014

2 a + 2 b + c 4 = 1511 \displaystyle \frac{2a + 2b + c}{4} = \boxed{1511}

Done.. Totally slipped out of my mind. Thank you!

Pratik Shastri - 6 years, 8 months ago

done in the same way

U Z - 6 years, 8 months ago

got the answer wrong by taking b as 2014...! :(

Aman Gautam - 6 years, 8 months ago

Log in to reply

2014 and 2 are not co-prime

Pratik Shastri - 6 years, 8 months ago

Did the same way! Easy, nice and a smooth problem!

Kartik Sharma - 6 years, 5 months ago
Jatin Yadav
Oct 27, 2014

r = 2 2014 ( 1 ) r ( r 2 + r + 1 r ! ) \displaystyle \sum_{r=2}^{2014} (-1)^r \bigg(\dfrac{r^2+r+1}{r!}\bigg)

= r = 2 2014 ( 1 ) r ( r ( r 1 ) ! + r + 1 r ! ) \displaystyle \sum_{r=2}^{2014} (-1)^r \bigg(\dfrac{r}{(r-1)!} + \dfrac{r+1}{r!}\bigg)

= r = 2 2014 ( ( 1 ) r r ( r 1 ) ! ( 1 ) r + 1 r + 1 ( r + 1 ) ! ) \displaystyle \sum_{r=2}^{2014} \bigg( (-1)^r \dfrac{r}{(r-1)!} - (-1)^{r+1} \dfrac{r+1}{(r+1)!}\bigg)

Now , this is clearly a telescoping series, which telescopes to

2 + 2015 2014 ! = 2 + 1 2013 ! + 1 2013 ! 2 + \dfrac{2015}{2014!} = 2+\dfrac{1}{2013!} + \dfrac{1}{2013!}

Clearly, a = 2 a=2 , b = 2013 b=2013 , c = 2014 c = 2014

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...