x → 0 lim sin 3 4 2 7 9 5 4 2 8 3 x ln ( tan ( 4 π + 4 3 2 3 9 4 8 2 9 x ) )
If the value of the limit above can be represented as b a for coprime positive integers a , b , find a + b .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Since α and β are relatively large numbers, it's better to show that they are relatively coprime.
Nice solution.
how can 864789658 and 3427954283 be coprime due to this i didnt write the solution i knew the answer
Here is a detailed proof with series expansions, without what we call in french "equivalents", not sure this translates well... and without l'hospital. Here are many calculation details, but this way of reasoning is actually pretty quick (I solved this in my head, except for checking the co primes...)
Let α = 4 3 2 3 9 4 8 2 9 , β = 3 4 2 7 9 5 4 2 8 3 . tan ( π / 4 + α x ) = tan ( π / 4 ) − tan ( α x ) 1 + tan ( π / 4 ) tan ( α x ) = 1 − tan ( α x ) 1 + tan ( α x ) Therefore: ln ( tan ( π / 4 + α x ) ) = ln ( 1 + tan ( α x ) ) − ln ( 1 − tan ( α x ) ) .
We then use the series expansion (for x small enough, typically x < 1 / ( α β ) ):
Moreover, sin ( β x ) = n = 0 ∑ ∞ ( − 1 ) n ( 2 n + 1 ) ! ( β x ) 2 n + 1 = x + x 3 n = 1 ∑ ∞ ( − 1 ) n ( 2 n + 1 ) ! ( β x ) 2 n − 1 sin ( β x ) = β x − ( β x ) 3 B ( x ) tan ( α x ) = ∑ n = 0 ∞ ( − 1 ) n ( 2 n ) ! ( α x ) 2 n ∑ n = 0 ∞ ( − 1 ) n ( 2 n + 1 ) ! ( α x ) 2 n + 1 = 1 + α 2 x 2 ∑ n = 1 ∞ ( − 1 ) n ( 2 n ) ! ( α x ) 2 ( n − 1 ) α x + α 3 x 3 ∑ n = 1 ∞ ( − 1 ) n ( 2 n + 1 ) ! ( α x ) 2 n − 1 tan ( α x ) = 1 − ( α x ) 2 A ( x ) α x − ( α x ) 3 B ( x ) = α x ( 1 − ( α x ) 2 C ( x ) ) with C ( x ) = 1 − ( α x ) 2 A ( x ) B ( x ) − A ( x ) .
And since t a n ( α x ) → 0 for x → 0 , ln ( 1 + tan ( α x ) ) − ln ( 1 − tan ( α x ) ) = n = 1 ∑ ∞ ( − 1 ) n + 1 n tan ( α x ) n + n = 1 ∑ ∞ n tan ( α x ) n = n = 1 ∑ ∞ 2 2 n − 1 tan ( α x ) 2 n − 1 = 2 tan ( α x ) + tan ( α x ) 3 D ( tan ( α x ) ) = 2 α x + ( α x ) 3 E ( x )
Of course, A , B , C , D , E are functions that are bounded around 0 . Putting all this together ... : sin ( β x ) ln ( tan ( π / 4 + α x ) ) = β x − ( β x ) 3 B ( x ) 2 α x + ( α x ) 3 E ( x ) = β 2 α 1 − ( β x ) 2 B ( x ) 1 + ( α x ) 2 E ( x ) → β 2 α
Checking that 2 α and β are co prime gives the result.
Problem Loading...
Note Loading...
Set Loading...
Let α = 4 3 2 3 9 4 8 2 9 , β = 3 4 2 7 9 5 4 2 8 3 , f ( x ) = ln ( tan ( 4 π + α x ) ) and g ( x ) = sin β x . We note that x → 0 lim f ( x ) = x → 0 lim g ( x ) = 0 . Therefore, we can use L'Hôspital's rule. x → 0 lim g ( x ) f ( x ) = x → 0 lim g ′ ( x ) f ′ ( x ) .
From:
tan ( 4 π + α x ) = 1 − tan α x 1 + tan α x = 1 − tan α x 1 + tan α x × 1 + tan α x 1 + tan α x = 1 − tan 2 α x 1 + 2 tan α x + tan 2 α x = tan 2 α x + sec 2 α x
Therefore,
f ( x ) ⇒ f ′ ( x ) = ln ( tan 2 α x + sec 2 α x ) = tan 2 α x + sec 2 α x 2 α sec 2 2 α x + 2 α tan 2 α x sec 2 α x = 2 α sec 2 α x
And we have,
x → 0 lim g ( x ) f ( x ) = x → 0 lim g ′ ( x ) f ′ ( x ) = x → 0 lim β cos β x 2 α sec 2 α x = β 2 α
⇒ a + b = 2 α + β = 2 × 4 3 2 3 9 4 8 2 9 + 3 4 2 7 9 5 4 2 8 3 = 4 2 9 2 7 4 3 9 4 1