Those two semicircles

Geometry Level 3

In the figure there are two semicircles. What is the length of A B AB , the diameter of the red semicircle, to four decimal places?


The answer is 9.7979.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Maria Kozlowska
Aug 1, 2018

C O = O F = A O = 6 , D G = G E G E = 3.5 , O G = O F G E E F = 6 3.5 2 = 0.5 CO=OF=AO=6, DG=GE \Rightarrow GE=3.5, OG=OF-GE-EF=6-3.5-2=0.5

G E 2 + h 2 = r 2 GE^2 + h^2 = r^2

O O 2 2 + A O 2 2 = A O 2 h 2 + O G 2 + r 2 = A O 2 OO_2^2+AO_2^2=AO^2 \Rightarrow h^2 + OG^2+r^2=AO^2

3. 5 2 + h 2 = r 2 3.5^2 + h^2 = r^2

h 2 + r 2 + 0. 5 2 = 6 2 h^2 + r^2 + 0.5^2=6^2

Solving these two equations we get value of r = 2 6 A B = 4 6 9.7979 r=2\sqrt{6} \Rightarrow AB=4\sqrt{6} \approx \boxed{9.7979}

How did you get the value of OG as 0.5 Please do explain clearly as I am not able to understand.....

T C Adityaa - 2 years, 10 months ago

Log in to reply

See the updated solution.

Maria Kozlowska - 2 years, 10 months ago

Let the center of the blue semicircle be the origin O ( 0 , 0 ) O(0,0) , the center of the red semicircle be C C and its radius be r r .

Since the triangle with vertices at C C , ( 3 , 0 ) (-3,0) and ( 4 , 0 ) (4,0) is an isosceles triangle. The x x coordinate of C C is 0.5. Let the y y coordinate of C C be a . a.

Then the equation of the blue semicircle is x 2 + y 2 = 36 . . . ( 1 ) x^2 + y^2 = 36 \ ...(1) and that of the red semicircle:

( x 0.5 ) 2 + ( y a ) 2 = r 2 Note that r 2 = a 2 + 3. 5 2 x 2 x + 0.25 + y 2 2 a y + a 2 = a 2 + 12.25 x 2 x + y 2 2 a y = 12 . . . ( 2 ) \begin{aligned} (x-0.5)^2 + (y-a)^2 & =\color{#3D99F6} r^2 & \small \color{#3D99F6} \text{Note that }r^2 = a^2 + 3.5^2 \\ x^2 - x + 0.25 + y^2 - 2ay + a^2 & = \color{#3D99F6} a^2 + 12.25 \\ x^2 - x + y^2 - 2ay & = 12 & ...(2) \end{aligned}

The two points of intersection A A and B B satisfy ( 1 ) ( 2 ) : x + 2 a y = 24 (1)-(2): \ x + 2ay = 24 , which is a straight line joining A A and B B . For line A B AB to be the diameter of the red semicircle, it must pass through C ( 0.5 , a ) C(0.5, a) . Therefore,

0.5 + 2 a 2 = 24 a = 24 0.5 2 = 47 2 r 2 = 47 4 + ( 7 2 ) 2 = 24 \begin{aligned} 0.5 + 2a^2 & = 24 \\ \implies a & = \sqrt{\frac {24-0.5}2} = \frac {\sqrt {47}}2 \\ \implies r^2 & = \frac {47}4 + \left(\frac 72\right)^2 = 24\end{aligned}

Therefore, the length of A B AB , the diameter of the red semicircle is 2 r = 2 24 9.7980 2r = 2\sqrt {24} \approx \boxed{9.7980} .

David Vreken
Aug 3, 2018

Let O O be the center of the red circle, P P be the center of the blue circle, D G DG be the given diameter of the blue circle, and E E and F F be the intersection points of the two semicircles, as shown below. Extend A B AB and D G DG so that they intersect at C C , and draw P B PB and O E OE .

The diameter of the blue circle D G = 3 + 7 + 2 = 12 DG = 3 + 7 + 2 = 12 , so the radius is P D = P B = 6 PD = PB = 6 .

By the intersecting secant theorem on the blue circle, A B A C = C D C G AB \cdot AC = CD \cdot CG or A B ( A B + B C ) = C D ( C D + 12 ) AB(AB + BC) = CD(CD + 12) . By the intersecting secant theorem on the red circle, A B A C = C E C F AB \cdot AC = CE \cdot CF or A B ( A B + B C ) = ( C D + 2 ) ( C D + 9 ) AB(AB + BC) = (CD + 2)(CD + 9) . Then A B ( A B + B C ) = C D ( C D + 12 ) = ( C D + 2 ) ( C D + 9 ) AB(AB + BC) = CD(CD + 12) = (CD + 2)(CD + 9) , which means C D = 18 CD = 18 , and A B ( A B + B C ) = 540 AB(AB + BC) = 540 .

Using the law of cosines on B C P \triangle BCP , cos C = C P 2 + B C 2 B P 2 2 C P B C \cos C = \frac{CP^2 + BC^2 - BP^2}{2 \cdot CP \cdot BC} , or cos C = 2 4 2 + B C 2 6 2 2 24 B C \cos C = \frac{24^2 + BC^2 - 6^2}{2 \cdot 24 \cdot BC} , or cos C = B C 2 + 540 48 B C \cos C = \frac{BC^2 + 540}{48 \cdot BC} . Using the law of cosines on C E O \triangle CEO , cos C = C E 2 + C O 2 E O 2 2 C E C O \cos C = \frac{CE^2 + CO^2 - EO^2}{2 \cdot CE \cdot CO} , or cos C = 2 0 2 + ( 1 2 A B ) 2 ( 1 2 A B + B C ) 2 2 20 1 2 A B \cos C = \frac{20^2 + (\frac{1}{2}AB)^2 - (\frac{1}{2}AB + BC)^2}{2 \cdot 20 \cdot \frac{1}{2}AB} , or since A B ( A B + B C ) = 540 AB(AB + BC) = 540 , cos C = 47 B C B C 2 + 540 \cos C = \frac{47 \cdot BC}{BC^2 + 540} . Then cos C = B C 2 + 540 48 B C = 47 B C B C 2 + 540 \cos C = \frac{BC^2 + 540}{48 \cdot BC} = \frac{47 \cdot BC}{BC^2 + 540} , which means B C = 2 141 2 6 BC = 2\sqrt{141} - 2\sqrt{6} , and since A B ( A B + B C ) = 540 AB(AB + BC) = 540 , A B = 4 6 9.7979 AB = 4\sqrt{6} \approx \boxed{9.7979} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...