Though it seems long

Algebra Level 5

x = 1 n = 0 9 1 ( x + n ) = 1 A , A = ? \large \displaystyle \sum^{\infty}_{x=1} \prod^{9}_{n=0} \dfrac{1}{(x+n)}=\dfrac{1}{A}\quad , \quad A = \, ?


The answer is 3265920.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Dec 25, 2015

Similar solution as Vighnesh Shenoy but different presentation:

x = 1 n = 0 9 1 x + n = x = 1 ( x 1 ) ! ( x + 9 ) ! See Note = 1 9 x = 1 ( ( x 1 ) ! ( x + 8 ) ! x ! ( x + 9 ) ! ) = 1 9 ( x = 1 ( x 1 ) ! ( x + 8 ) ! x = 1 x ! ( x + 9 ) ! ) = 1 9 ( x = 1 ( x 1 ) ! ( x + 8 ) ! x = 2 ( x 1 ) ! ( x + 8 ) ! ) = 1 9 ( 0 ! 9 ! ) = 1 9 × 9 ! \begin{aligned} \sum_{x=1}^\infty \prod_{n=0}^9 \frac{1}{x+n} & = \sum_{x=1}^\infty \frac{(x-1)!}{(x+9)!} \quad \quad \color{#3D99F6}{\text{See Note }} \\ & = \frac{1}{9} \sum_{x=1}^\infty \left(\frac{(x-1)!}{(x+8)!}-\frac{x!}{(x+9)!}\right) \\ & = \frac{1}{9}\left( \sum_{x=1}^\infty \frac{(x-1)!}{(x+8)!}- \sum_{x=1}^\infty \frac{x!}{(x+9)!}\right) \\ & = \frac{1}{9}\left( \sum_{x=1}^\infty \frac{(x-1)!}{(x+8)!}- \sum_{x=2}^\infty \frac{(x-1)!}{(x+8)!}\right) \\ & = \frac{1}{9}\left(\frac{0!}{9!}\right) \\ & = \frac{1}{9 \times 9!} \end{aligned}

A = 9 × 9 ! = 3265920 \Rightarrow A = 9 \times 9! = \boxed{3265920}

Note: \color{#3D99F6}{\text{Note:}}

( x 1 ) ! ( x + 8 ) ! x ! ( x + 9 ) ! = ( x 1 ) ! ( x + 9 ) x ! ( x + 9 ) ! = x ! + 9 ( x 1 ) ! x ! ( x + 9 ) ! = 9 ( x 1 ) ! ( x + 9 ) ! \begin{aligned} \frac{(x-1)!}{(x+8)!}-\frac{x!}{(x+9)!} & = \frac{(x-1)!(x+9)-x!}{(x+9)!} = \frac{x! + 9(x-1)!-x!}{(x+9)!} = \frac{9(x-1)!}{(x+9)!} \end{aligned}

Did the same way (+1) !

Aditya Sky - 5 years, 1 month ago

S = x = 1 n = 0 9 1 x + n \displaystyle S = \sum_{x=1}^{\infty}\prod_{n=0}^{9} \dfrac{1}{x+n}

S < n = 1 1 ( n ) ( n + 1 ) = 1 S < \sum_{n=1}^{\infty} \dfrac{1}{(n)(n+1)} = 1
Thus the series is absolutely convergent and any rearrangement is justfied.

S = x = 1 1 x × ( x + 1 ) × ( x + 2 ) . . . × ( x + 9 ) \displaystyle \therefore S = \sum_{x=1}^{\infty} \dfrac{1}{x \times (x+1) \times (x+2) ... \times (x+9) }
S = x = 1 1 x × ( x + 1 ) × ( x + 2 ) . . . × ( x + 9 ) \displaystyle \therefore S = \sum_{x=1}^{\infty} \dfrac{1}{x \times (x+1) \times (x+2) ... \times (x+9) }
S = 1 9 ( × x = 1 1 x × ( x + 1 ) . . . × ( x + 8 ) 1 ( x + 1 ) × ( x + 2 ) . . . × ( x + 9 ) ) \displaystyle \therefore S = \dfrac{1}{9} \left( \times \sum_{x=1}^{\infty} \dfrac{1}{x \times (x+1)...\times(x+8)} - \dfrac{1}{(x+1)\times(x+2)...\times(x+9)} \right)

The given summation forms a telescopic series where all the terms cancel out except for the first and the last.
S = 1 9 × ( 1 9 ! lim x > 1 ( x + 1 ) × ( x + 2 ) . . . × ( x + 9 ) ) = 1 9 × 9 ! 0 \displaystyle \therefore S = \dfrac{1}{9}\times \left( \dfrac{1}{9!} -\lim_{x->\infty} \dfrac{1}{(x+1)\times (x+2)...\times (x+9)} \right) = \dfrac{1}{9 \times 9!} - 0

A = 9 × 9 ! = 3265920 \displaystyle \therefore A = 9 \times 9! =3265920

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...