x = 1 ∑ ∞ n = 0 ∏ 9 ( x + n ) 1 = A 1 , A = ?
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Did the same way (+1) !
S = x = 1 ∑ ∞ n = 0 ∏ 9 x + n 1
S
<
∑
n
=
1
∞
(
n
)
(
n
+
1
)
1
=
1
Thus the series is absolutely convergent and any rearrangement is justfied.
∴
S
=
x
=
1
∑
∞
x
×
(
x
+
1
)
×
(
x
+
2
)
.
.
.
×
(
x
+
9
)
1
∴
S
=
x
=
1
∑
∞
x
×
(
x
+
1
)
×
(
x
+
2
)
.
.
.
×
(
x
+
9
)
1
∴
S
=
9
1
(
×
x
=
1
∑
∞
x
×
(
x
+
1
)
.
.
.
×
(
x
+
8
)
1
−
(
x
+
1
)
×
(
x
+
2
)
.
.
.
×
(
x
+
9
)
1
)
The given summation forms a telescopic series where all the terms cancel out except for the first and the last.
∴
S
=
9
1
×
(
9
!
1
−
x
−
>
∞
lim
(
x
+
1
)
×
(
x
+
2
)
.
.
.
×
(
x
+
9
)
1
)
=
9
×
9
!
1
−
0
∴ A = 9 × 9 ! = 3 2 6 5 9 2 0
Problem Loading...
Note Loading...
Set Loading...
Similar solution as Vighnesh Shenoy but different presentation:
x = 1 ∑ ∞ n = 0 ∏ 9 x + n 1 = x = 1 ∑ ∞ ( x + 9 ) ! ( x − 1 ) ! See Note = 9 1 x = 1 ∑ ∞ ( ( x + 8 ) ! ( x − 1 ) ! − ( x + 9 ) ! x ! ) = 9 1 ( x = 1 ∑ ∞ ( x + 8 ) ! ( x − 1 ) ! − x = 1 ∑ ∞ ( x + 9 ) ! x ! ) = 9 1 ( x = 1 ∑ ∞ ( x + 8 ) ! ( x − 1 ) ! − x = 2 ∑ ∞ ( x + 8 ) ! ( x − 1 ) ! ) = 9 1 ( 9 ! 0 ! ) = 9 × 9 ! 1
⇒ A = 9 × 9 ! = 3 2 6 5 9 2 0
Note:
( x + 8 ) ! ( x − 1 ) ! − ( x + 9 ) ! x ! = ( x + 9 ) ! ( x − 1 ) ! ( x + 9 ) − x ! = ( x + 9 ) ! x ! + 9 ( x − 1 ) ! − x ! = ( x + 9 ) ! 9 ( x − 1 ) !