Calculate the
Then put the answer for n=99999 and x=4.18 radians.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Let
S n = s i n ( x ) − s i n ( 2 x ) + . . . + ( − 1 ) n − 1 s i n ( n x ) and C n = c o s ( x ) − s i n ( 2 x ) + . . . + ( − 1 ) n − 1 c o s ( n x )
Σ = C n + i S n = ( c o s ( x ) + i s i n ( x ) ) − ( c o s ( 2 x ) + i s i n ( 2 x ) ) + . . .
Now let q = c o s x + i s i n x
Σ = q − q 2 + q 3 − . . . = q ( 1 − q + q 2 − q 3 + . . . ) = q ( 1 − ( Σ − ( − 1 ) n − 1 q n ) )
You will easy find that:
Σ = q + 1 q ( 1 + ( − 1 ) n − 1 q n )
By using trigonometric identities you can rewrite sigma as:
Σ = 2 c o s ( 2 x ) c o s ( 2 x ) + ( − 1 ) n − 1 c o s ( 2 x ) c o s ( n x ) − ( − 1 ) n − 1 s i n ( 2 x ) s i n ( n x ) + i 2 c o s ( 2 x ) s i n ( 2 x ) + ( − 1 ) n − 1 c o s ( 2 x ) s i n ( n x ) + ( − 1 ) n − 1 s i n ( 2 x ) c o s ( n x )
It's clear that:
C n = 2 c o s ( 2 x ) c o s ( 2 x ) + ( − 1 ) n − 1 c o s ( 2 x ) c o s ( n x ) − ( − 1 ) n − 1 s i n ( 2 x ) s i n ( n x )
And
S n = 2 c o s ( 2 x ) s i n ( 2 x ) + ( − 1 ) n − 1 c o s ( 2 x ) s i n ( n x ) + ( − 1 ) n − 1 s i n ( 2 x ) c o s ( n x )
For odd n S n can be written as:
S n = c o s ( 2 x ) c o s ( 2 n x ) s i n ( 2 ( n + 1 ) x )