Thousands of sums

Geometry Level 4

Calculate the s i n ( x ) s i n ( 2 x ) + s i n ( 3 x ) s i n ( 4 x ) + s i n ( 5 x ) . . . + ( 1 ) n 1 s i n ( n x ) sin(x) - sin(2x) + sin(3x) - sin(4x) + sin(5x)-...+(-1)^{n-1} sin(nx)

Then put the answer for n=99999 and x=4.18 radians.


The answer is -1.28.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Let

S n = s i n ( x ) s i n ( 2 x ) + . . . + ( 1 ) n 1 s i n ( n x ) S_n=sin(x) - sin (2x)+...+(-1)^{n-1} sin(nx) and C n = c o s ( x ) s i n ( 2 x ) + . . . + ( 1 ) n 1 c o s ( n x ) C_n=cos(x)-sin(2x)+...+(-1)^{n-1}cos(nx)

Σ = C n + i S n = ( c o s ( x ) + i s i n ( x ) ) ( c o s ( 2 x ) + i s i n ( 2 x ) ) + . . . \Sigma=C_n+i S_n=(cos(x) + i sin(x))-(cos(2x)+i sin(2x))+...

Now let q = c o s x + i s i n x q=cos x + i sin x

Σ = q q 2 + q 3 . . . = q ( 1 q + q 2 q 3 + . . . ) = q ( 1 ( Σ ( 1 ) n 1 q n ) ) \Sigma=q-q^2+q^3-...=q(1-q+q^2-q^3+...)=q(1-(\Sigma-(-1)^{n-1} q^n))

You will easy find that:

Σ = q ( 1 + ( 1 ) n 1 q n ) q + 1 \Sigma=\frac{q(1+(-1)^{n-1}q^n)}{q+1}

By using trigonometric identities you can rewrite sigma as:

Σ = c o s ( x 2 ) + ( 1 ) n 1 c o s ( x 2 ) c o s ( n x ) ( 1 ) n 1 s i n ( x 2 ) s i n ( n x ) 2 c o s ( x 2 ) + i s i n ( x 2 ) + ( 1 ) n 1 c o s ( x 2 ) s i n ( n x ) + ( 1 ) n 1 s i n ( x 2 ) c o s ( n x ) 2 c o s ( x 2 ) \Sigma=\frac{cos(\frac{x}{2})+(-1)^{n-1}cos(\frac{x}{2})cos(nx)-(-1)^{n-1} sin(\frac{x}{2}) sin(nx)}{2cos(\frac{x}{2})} +i \frac{sin(\frac{x}{2})+(-1)^{n-1}cos(\frac{x}{2})sin(nx)+(-1)^{n-1} sin(\frac{x}{2}) cos(nx)}{2cos(\frac{x}{2})}

It's clear that:

C n = c o s ( x 2 ) + ( 1 ) n 1 c o s ( x 2 ) c o s ( n x ) ( 1 ) n 1 s i n ( x 2 ) s i n ( n x ) 2 c o s ( x 2 ) C_n=\frac{cos(\frac{x}{2})+(-1)^{n-1}cos(\frac{x}{2})cos(nx)-(-1)^{n-1} sin(\frac{x}{2}) sin(nx)}{2cos(\frac{x}{2})}

And

S n = s i n ( x 2 ) + ( 1 ) n 1 c o s ( x 2 ) s i n ( n x ) + ( 1 ) n 1 s i n ( x 2 ) c o s ( n x ) 2 c o s ( x 2 ) S_n=\frac{sin(\frac{x}{2})+(-1)^{n-1}cos(\frac{x}{2})sin(nx)+(-1)^{n-1} sin(\frac{x}{2}) cos(nx)}{2cos(\frac{x}{2})}

For odd n n S n S_n can be written as:

S n = c o s ( n x 2 ) s i n ( ( n + 1 ) x 2 ) c o s ( x 2 ) S_n=\frac{cos(\frac{nx}{2}) sin(\frac{(n+1)x}{2})}{cos(\frac{x}{2})}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...