Three Aces

Geometry Level 4

Two sides of a triangle, as well as the distance between its incenter and circumcenter , all have the value of 1 1 . What is the area of the triangle? If it can be expressed as p q \dfrac{p}{q} , where p p and q q are coprime, submit p + q p+q .


The answer is 11.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Let A B C ABC be the triangle in discussion, with a = b = 1 a=b=1 . Let I I and O O be the incenter and the circumcenter of the triangle respectively. Denote by r r and R R the inradius and the circumradius respectively.

For the area A A of A B C \triangle ABC we have A = a b c 4 R = s r A=\dfrac{abc}{4R}=sr where s s is the semiperimeter of the triangle. Thus, we get 1 1 c 4 R = 1 + 1 + c 2 r r R = c 2 c + 4 ( 1 ) \dfrac{1\cdot 1\cdot c}{4R}=\dfrac{1+1+c}{2}r\Leftrightarrow rR=\dfrac{c}{2c+4} \ \ \ \ \ (1)

According to Euler's theorem in geometry it holds that I O 2 = R ( R 2 r ) I{{O}^{2}}=R\left( R-2r \right) From this we get

R 2 2 r R = 1 R 2 = 1 + 2 r R ( 1 ) R 2 = 1 + 2 2 2 c + 4 R = 2 c + 2 c + 2 ( 2 ) {{R}^{2}}-2rR=1\Rightarrow {{R}^{2}}=1+2rR\overset{\left( 1 \right)}{\mathop{\Rightarrow }}\,{{R}^{2}}=1+2\dfrac{2}{2c+4}\Rightarrow R=\sqrt{\dfrac{2c+2}{c+2}} \ \ \ \ \ (2) On our way to build an equation for c c , we have

A = 1 2 a b sin C A = a b c 4 R } 1 2 a b sin C = a b c 4 R ( 2 ) sin C 2 = c 4 2 c + 2 c + 2 4 sin 2 C = c 2 ( c + 2 ) 2 c + 2 4 ( 1 cos 2 C ) = c 3 + 2 c 2 c + 2 ( 3 ) \begin{aligned} \left. \begin{matrix} A=\dfrac{1}{2}ab\sin C \\ A=\dfrac{abc}{4R} \\ \end{matrix} \right\} & \Rightarrow \dfrac{1}{2}ab\sin C=\dfrac{abc}{4R} \\ & \overset{\left( 2 \right)}{\mathop{\Rightarrow }}\,\dfrac{\sin C}{2}=\dfrac{c}{4\sqrt{\dfrac{2c+2}{c+2}}} \\ & \Leftrightarrow 4{{\sin }^{2}}C=\dfrac{{{c}^{2}}\left( c+2 \right)}{2c+2} \\ & \Leftrightarrow 4\left( 1-{{\cos }^{2}}C \right)=\dfrac{{{c}^{3}}+2c}{2c+2} \ \ \ \ \ (3)\\ \end{aligned}

From Cosine Rule

cos C = a 2 + b 2 c 2 2 a b cos C = 2 c 2 2 ( 4 ) \cos C=\dfrac{{{a}^{2}}+{{b}^{2}}-{{c}^{2}}}{2ab}\Rightarrow \cos C=\dfrac{2-{{c}^{2}}}{2} \ \ \ \ \ (4)

Combining,

( 3 ) , ( 4 ) 4 ( 1 ( 2 c 2 2 ) 2 ) = c 3 + 2 c 2 c + 2 \left( 3 \right),\left( 4 \right)\Rightarrow 4\left( 1-{{\left( \dfrac{2-{{c}^{2}}}{2} \right)}^{2}} \right)=\dfrac{{{c}^{3}}+2c}{2c+2} Rearranging, we get

2 c 5 + 2 c 4 7 c 3 6 c 2 = 0 c 0 2 c 3 + 2 c 2 7 c 6 = 0 ( c + 2 ) ( 2 c 2 2 c 3 ) = 0 c > 0 c = 1 + 7 2 \begin{aligned} 2{{c}^{5}}+2{{c}^{4}}-7{{c}^{3}}-6{{c}^{2}}=0 & \overset{c\ne 0}{\mathop{\Leftrightarrow }}\,2{{c}^{3}}+2{{c}^{2}}-7c-6=0 \\ & \Leftrightarrow \left( c+2 \right)\left( 2{{c}^{2}}-2c-3 \right)=0 \\ & \overset{c>0}{\mathop{\Leftrightarrow }}\,c=\dfrac{1+\sqrt{7}}{2} \\ \end{aligned} Plugging this value in A = a b c 4 R = c 4 2 c + 2 c + 2 A=\dfrac{abc}{4R}=\dfrac{c}{4\sqrt{\dfrac{2c+2}{c+2}}} yields A = 3 8 \boxed{A=\dfrac{3}{8}} . For the answer, p + q = 3 + 8 = 11 p+q=3+8=\boxed{11} .

Well done, Thanos.

Fletcher Mattox - 6 months ago

Let the incircle of B A C \bigtriangleup BAC touch sides B C \overline{\rm BC} & C A \overline{\rm CA} at points D D & E E respectively. Draw I D \overline{\rm ID} & I E \overline{\rm IE} . Drop perpendicular from O O on B C \overline{\rm BC} meeting B C \overline{\rm BC} at L L . Points B B , I I , E E & O O will be collinear since B A C \bigtriangleup BAC is isosceles. Draw the line containing them.

Drop perpendicular from I I on O L \overline{\rm OL} meeting O L \overline{\rm OL} at M M .

Observe that, in I M O \bigtriangleup IMO & B E C \bigtriangleup BEC , I O \overline{\rm IO} = = B C \overline{\rm BC} = = 1 1 , I M O \angle IMO = = B E C \angle BEC & M I O \angle MIO = = E B C \angle EBC . Thus I M O \bigtriangleup IMO \cong B E C \bigtriangleup BEC by A A - S S - A A criterion of congruency.
\Rightarrow B E \overline {\rm BE} = = I M \overline {\rm IM}

Let C A \overline {\rm CA} = = 2 a 2a . \Rightarrow E C \overline {\rm EC} = = 1 2 \frac {1}{2} \cdot 2 a 2a = = a a

I M \overline {\rm IM} = = D L \overline {\rm DL} [ Since I M L D IMLD is a rectangle ]

= = D C \overline {\rm DC} - L C \overline {\rm LC}

= = E C \overline {\rm EC} - 1 2 \frac {1}{2} B C \overline {\rm BC} = = a a - 1 2 \frac{1}{2}

Thus, B E \overline {\rm BE} = = I M \overline {\rm IM} = = a a - 1 2 \frac{1}{2}

Applying the Pythagorean theorem on B E C \bigtriangleup BEC gives ,

B E 2 BE^2 + + E C 2 EC^2 = = B C 2 BC^2

\Rightarrow ( a 1 2 ) 2 (a-\frac{1}{2})^2 + + a 2 a^2 = = 1 1 \Rightarrow 2 a 2 2a^2 - a a = = 3 4 \frac {3}{4}

Therefore, area of A B C \bigtriangleup ABC = = 1 2 \frac {1}{2} \cdot A C \overline {\rm AC} \cdot B E \overline {\rm BE} = = E C \overline {\rm EC} \cdot B E \overline {\rm BE} = = a a ( a 1 2 ) (a-\frac{1}{2}) = = 1 2 \frac{1}{2} ( 2 a 2 a ) (2a^2 -a) = = 1 2 \frac{1}{2} × \times 3 4 \frac{3}{4} = = 3 8 \frac{3}{8}

p p = = 3 3 , q q = = 8 8 \Rightarrow p + q p+q = = 11 \boxed {11}

Chew-Seong Cheong
Dec 10, 2020

Let the isosceles triangle be A B C ABC with A B = B C = 1 AB=BC=1 , the midpoints of A B AB and A C AC be M M and N N , the incenter be I I , and the circumcenter be O O . We note that O M OM is perpendicular to A B AB and I O IO bisects A C AC perpendicularly at N N .

We note that B A C = B O M = θ \angle BAC = \angle BOM = \theta . Then I N = A N tan θ 2 = cos θ tan θ 2 IN = AN \cdot \tan \dfrac \theta 2 = \cos \theta \tan \dfrac \theta 2 . And B O = B M csc θ = 1 2 sin θ BO = BM \cdot \csc \theta = \dfrac 1{2\sin \theta} . Then we have:

I O = B O B N + I N 1 = 1 2 sin θ sin θ + cos θ tan θ 2 Let t = tan θ 2 1 = 1 + t 2 4 t 2 t 1 + t 2 + t ( 1 t 2 ) 1 + t 2 1 = 1 + t 2 4 t t 4 t = 1 + t 2 4 t 2 3 t 2 = 1 4 t \begin{aligned} IO & = BO-BN + IN \\ 1 & = \frac 1{2\sin \theta} - \sin \theta + \cos \theta \tan \frac \theta 2 & \small \blue{\text{Let }t=\tan \frac \theta 2} \\ 1 & = \frac {1+t^2}{4t} - \frac {2t}{1+t^2} + \frac {t(1-t^2)}{1+t^2} \\ 1 & = \frac {1+t^2}{4t} - t \\ 4t & = 1 +t^2 - 4t^2 \\ \implies 3t^2 & = 1-4t \end{aligned}

The area of A B C \triangle ABC :

[ A B C ] = sin θ cos θ = 2 t 1 + t 2 1 t 2 1 + t 2 = 18 t ( 1 t 2 ) ( 3 + 3 t 2 ) 2 = 18 t ( 1 t 2 ) 16 ( 1 t ) 2 = 9 t ( 1 + t ) 8 ( 1 t ) = 9 t + 9 t 2 8 ( 1 t ) = 3 3 t 8 ( 1 t ) = 3 8 \begin{aligned} [ABC] & = \sin \theta \cos \theta = \frac {2t}{1+t^2} \cdot \frac {1-t^2}{1+t^2} = \frac {18t(1-t^2)}{(3+3t^2)^2} = \frac {18t(1-t^2)}{16(1-t)^2} = \frac {9t(1+t)}{8(1-t)} = \frac {9t+9t^2}{8(1-t)} = \frac {3-3t}{8(1-t)} = \frac 38 \end{aligned}

Therefore p + q = 3 + 8 = 11 p+q = 3+8 = \boxed{11} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...