Three Chords & The Truth

Geometry Level 4

Segments P A \overline{PA} , P B \overline{PB} , and P C \overline{PC} are all chords of the same circle, Γ \Gamma , such that P A = 5 PA=5 , P B = 8 PB=8 , and P C = 3 PC=3 . In addition, A P B B P C . \angle APB \cong \angle BPC. The area of Γ \Gamma can be written as a b π \frac{a}{b}\pi , where a a and b b are positive, coprime integers. Find a + b a+b .


The answer is 52.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Discussions for this problem are now closed

Sowmitra Das
May 6, 2014

A P B = B P C A B ^ = B C ^ A B = B C \angle APB=\angle BPC \Rightarrow \widehat{AB}=\widehat{BC} \Rightarrow \overline{AB}=\overline {BC}

Let, A B = B C = x \overline{AB}=\overline {BC}=x .

Then, by Ptolemy's Theorem,

P A C B + P C A B = P B A C \overline{PA}\cdot \overline{CB}+\overline{PC} \cdot \overline{AB}= \overline{PB}\cdot \overline{AC}
5 x + 3 x = 8 A C \Rightarrow 5x+3x= 8\overline{AC}
8 x = 8 A C \Rightarrow 8x=8\overline{AC}
x = A C \Rightarrow x=\overline{AC}
A B = B C = A C \therefore \overline{AB}=\overline{BC}=\overline{AC}

So, A B C \triangle ABC is equilateral.
A P B = A C B = 6 0 \therefore \angle APB=\angle ACB=60^\circ

Now, applying Cosine-Rule to A P B \triangle APB , we get,

A B 2 AB^2 = P B 2 + P A 2 2 P B P A cos A P B =PB^2+PA^2-2\cdot PB\cdot PA\cdot \cos{\angle APB}
= 8 2 + 5 2 2.8.5 cos 6 0 = 8^2+5^2-2.8.5\cos{60^\circ}
= 49 =49
A B = 7 \therefore \overline{AB}=7 .

Now, A B = 2 R sin 6 0 R = 7 3 \overline{AB}=2R\cdot\sin{60^\circ}\Rightarrow R=\frac{7}{\sqrt{3}}

\therefore Area of Γ = π R 2 = π ( 7 3 ) 2 = 49 3 π \Gamma=\pi R^2=\pi\cdot(\frac{7}{\sqrt{3}})^2=\frac{49}{3}\pi

a + b = 49 + 3 = 52 \therefore a+b=49+3=\boxed{52}

Maharnab Mitra
May 4, 2014

The question asks to find R 2 R^2 where R R is the radius. image image

In the figure, O C P = O P C = θ \angle OCP = \angle OPC = \theta and O P A = O A P = α \angle OPA =\angle OAP = \alpha .

Now,

2 R c o s ( θ ) = 3 2Rcos(\theta)= 3

2 R c o s ( α ) = 5 2Rcos(\alpha)=5

2 R c o s ( θ α 2 ) = 8 2Rcos(\frac{\theta- \alpha}{2})=8

So,

2 c o s 2 ( θ α 2 ) 1 = c o s ( θ α ) = 2 ( 4 R ) 2 1 2cos^2(\frac{\theta- \alpha}{2})-1=cos(\theta- \alpha)=2(\frac{4}{R})^2-1

c o s ( θ ) c o s ( α ) + s i n ( θ ) s i n ( α ) = 32 R 2 1 \implies cos(\theta)cos(\alpha)+sin(\theta)sin(\alpha)=\frac{32}{R^2}-1

3 2 R 5 2 R + 4 R 2 9 2 R 4 R 2 25 2 R = 32 R 2 1 \implies \frac{3}{2R} \frac{5}{2R} + \frac{\sqrt{4R^2-9}}{2R} \frac{\sqrt{4R^2-25}}{2R}=\frac{32}{R^2}-1

( 4 R 2 9 ) ( 4 R 2 25 ) = 113 4 R 2 R 2 = 12544 768 = 49 3 \implies \sqrt{(4R^2-9)(4R^2-25)} = 113-4R^2 \implies R^2=\frac{12544}{768} = \frac{49}{3}

π R 2 = π 49 3 \implies \pi R^2 = \pi \frac{49}{3}

Hence, 49 + 3 = 52 49+3= \boxed{52}

WOW!

Jianzhi Wang - 7 years, 1 month ago
Jianzhi Wang
May 1, 2014

Since angle APB = angle BPC, line AB = line BC. Let angle APB = x. Using cosine rule on triangle PAB and PBC, we get AB^2 = 73 - 48cosx = 89 - 80cosx. Solving it, we get x = 60 degrees and AB = 7. Using the extended sine rule on triangle PAB, we get 7/sin(60) = 2R where R is the circumradius of triangle PAB. Finally, we get a/b = R^2 = 49/3. a+b = 52.

Wow.

Shuchit Khurana - 7 years, 1 month ago

A neat solution

Jayashree Lakshmanan - 7 years, 1 month ago

Correction: 7/cos(60) = 2R is incorrect. It should be 7/sin(60 degrees) = 2R

Chester Gan - 7 years, 1 month ago

Thanks for the correction! :) My bad...

Jianzhi Wang - 7 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...