Three consecutive years!

Number Theory Level pending

Hint: Try cancelling out.


The answer is 498.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Let us first try to simplify the fraction a bit.

In 2014 ! 2015 ! 2013 ! \frac { 2014!2015! }{ 2013! } ,
2014 ! 2013 ! = 2014 × 2013 ! 2013 ! = 2014 \frac { 2014! }{ 2013! } =\frac { 2014 \times 2013! }{ 2013! } =2014

T h e r e f o r e , i t i s s i m p l i f i e d i n t o 2014 ( 2015 ! ) . N o w , t o f i n d t h e n u m b e r o f t r a i l i n g z e r o e s i n t h i s e x p r e s s i o n , B y d e P o l i g n a c s f o r m u l a , 2015 / 5 = 403 2015 / 25 = 80 ( I g n o r e t h e r e m a i n d e r ) 2015 / 125 = 16 ( I g n o r e t h e r e m a i n d e r ) 2015 / 625 = 3 ( A g a i n , i g n o r e t h e r e m a i n d e r ) T h e r e f o r e , n u m b e r o f t r a i l i n g z e r o e s i s 502 ( b y a d d i n g ) . H e n c e , 1000 x = 498. Therefore,\quad it\quad is\quad simplified\quad into\quad 2014(2015!).\\ \\ Now,\quad to\quad find\quad the\quad number\quad of\quad trailing\quad zeroes\quad in\quad this\quad expression,\\ \\ By\quad de\quad Polignac's\quad formula,\\ \\ 2015/5\quad =\quad 403\quad \quad \\ \\ 2015/25\quad =\quad 80\quad (Ignore\quad the\quad remainder)\\ \\ 2015/125\quad =\quad 16\quad (Ignore\quad the\quad remainder)\\ \\ 2015/625\quad =\quad 3\quad (Again,\quad ignore\quad the\quad remainder)\\ \\ Therefore,\quad number\quad of\quad trailing\quad zeroes\quad is\quad 502\quad (by\quad adding).\\ \\ Hence,\quad 1000\quad -\quad x\quad =\quad 498.\\ \\

FYI - To type equations in Latex, you just need to add around your math code. In this way, you don't have to use \quad all the time. I've edited the first line, so that you can refer to it - Calvin

Calvin Lin Staff - 6 years, 8 months ago

Hey, but you have to find the trailing zeroes in 2014(2015!) and you just did the trailing zeroes for 2015!. So what about 2014???

Anuj Shikarkhane - 6 years, 9 months ago

Log in to reply

Here, 2014=2×19×53. So it simply doesn't have zeros to contribute.

Sanjeet Raria - 6 years, 9 months ago

Log in to reply

Ok, thanks

Anuj Shikarkhane - 6 years, 9 months ago

The number of zeroes won't increase by multiplying it by 2014.

Shashank Rammoorthy - 6 years, 9 months ago

Log in to reply

Ok, thanks

Anuj Shikarkhane - 6 years, 9 months ago

I did the same ^_^ Neway it is a nice problem to warm up ur brain (y)

Akash Baran Ghosh - 6 years, 9 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...