Three Equations, Three Variables!

Algebra Level 4

{ x 3 + x ( y z ) 2 = 2 y 3 + y ( z x ) 2 = 30 z 3 + z ( x y ) 2 = 16 \large{\begin{cases}{x^3 + x(y-z)^2 = 2} \\ {y^3 + y(z-x)^2 = 30} \\{z^3 + z(x-y)^2 = 16} \end{cases}}

Find the sum of all real x , y , z x,y,z for which the above system of equations satisfies.


The answer is 6.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Note that x , y , z 0 x,y,z\ne0 . Then we can write equivalently the system as follows

{ x ( x 2 + y 2 + z 2 ) 2 x y z = 2 y ( x 2 + y 2 + z 2 ) 2 x y z = 30 z ( x 2 + y 2 + z 2 ) 2 x y z = 16 \quad\;\left\{\begin{array}{l}x(x^2+y^2+z^2)-2xyz=2\\y(x^2+y^2+z^2)-2xyz=30\\z(x^2+y^2+z^2)-2xyz=16\end{array}\right.

{ x ( x 2 + y 2 + z 2 ) 2 x y z = 2 ( y z ) ( x 2 + y 2 + z 2 ) = 14 ( z x ) ( x 2 + y 2 + z 2 ) = 14 \Leftrightarrow \left\{\begin{array}{l}x(x^2+y^2+z^2)-2xyz=2\\(y-z)(x^2+y^2+z^2)=14\\(z-x)(x^2+y^2+z^2)=14\end{array}\right.

{ x ( x 2 + y 2 + z 2 ) 2 x y z = 2 ( y z ) ( x 2 + y 2 + z 2 ) = 14 y = 2 z x \Leftrightarrow \left\{\begin{array}{l}x(x^2+y^2+z^2)-2xyz=2\\(y-z)(x^2+y^2+z^2)=14\\y=2z-x\end{array}\right.

{ 2 x 3 2 x 2 z + x z 2 = 2 2 x 3 + 6 x 2 z 9 x z 2 + 5 z 3 = 14 y = 2 z x \Leftrightarrow \left\{\begin{array}{l}2x^3-2x^2z+xz^2=2\\-2x^3+6x^2z-9xz^2+5z^3=14\\y=2z-x\end{array}\right.

{ 2 x 3 2 x 2 z + x z 2 = 2 5 z 3 16 x z 2 + 20 x 2 z 16 x 3 = 0 y = 2 z x \Leftrightarrow \left\{\begin{array}{l}2x^3-2x^2z+xz^2=2\\5z^3-16xz^2+20x^2z-16x^3=0\\y=2z-x\end{array}\right.

As x , z 0 x,z\ne0 , put t = z x t=\dfrac{z}{x} , we have:

5 t 3 16 t 2 + 20 t 16 = 0 ( t 2 ) ( 5 t 2 6 t + 8 ) = 0 t = 2 5t^3-16t^2+20t-16=0 \Leftrightarrow (t-2)(5t^2-6t+8)=0 \Leftrightarrow t=2

Hence z = 2 x z=2x and the system is equivalent to

{ 2 x 3 2 x 2 z + x z 2 = 2 z = 2 x y = 2 z x { x = 1 y = 3 z = 2 \left\{\begin{array}{l}2x^3-2x^2z+xz^2=2\\z=2x\\y=2z-x\end{array}\right.\Leftrightarrow \left\{\begin{array}{l}x=1\\y=3\\z=2\end{array}\right.

So, the answer is 1 + 2 + 3 = 6 1+2+3=\boxed{6} .

Sarith Imaduwage
Sep 3, 2015

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...