Three equations

Algebra Level 2

3 x + 2 y 4 z = 4............... ( 1 ) 3x + 2y - 4z = 4............... (1)

2 x + 3 y + z = 12......... ( 2 ) -2x + 3y + z = 12......... (2)

x 2 y + 2 z = 10........... ( 3 ) x - 2y + 2z = -10 ........... (3)

Three equations are given above, what is the value of x + y + z x + y + z ?


The answer is 0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Munem Shahriar
Jun 10, 2017

Given that,

3 x + 2 y 4 z = 4............... ( 1 ) 3x + 2y - 4z = 4...............(1)

2 x + 3 y + z = 12............... ( 2 ) -2x + 3y + z = 12...............(2)

x 2 y + 2 z = 10............. ( 3 ) x - 2y + 2z = -10 .............(3)

Now, Multiply equation (2) by 4 and equation (3) by 2.

3 x + 2 y 4 z = 4............ ( 1 ) 3x + 2y - 4z = 4............(1)

8 x + 12 y + 4 z = 48....... ( 4 ) -8x + 12y + 4z = 48.......(4) )

2 x 4 y + 4 z = 20........ ( 5 ) 2x - 4y + 4z = -20........(5) )

Add equations (1) and (4). 5 x + 14 y = 52...... ( 6 ) ⇒ -5x + 14y = 52......(6)

Add equations (1) and (5). 5 x 2 y = 16........... ( 7 ) ⇒ 5x - 2y = -16...........(7)

Add equations (6) and (7). 12 y = 36 y = 3 ⇒ 12y = 36 ⇒ y = 3

Now we have the value of y y .

Substitute the value of y back into equation (7) to find x x

5 x 6 = 16 5x - 6 = -16

5 x = 10 x = 2 ⇒ 5x = -10 ⇒ x = -2

Now we have the values of y y and x x .

Substitute these values back into equation (2) to find z z .

4 + 9 + z = 12 z = 1 ⇒ 4 + 9 + z = 12 ⇒ z = -1

Therefore, x + y + z = 2 + 3 + ( 1 ) = x + y + z = -2 + 3 + (-1) = 0 0 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...