Three equations#2

Algebra Level 3

2 x 6 y + z = 12 2x - 6y + z = -12 ...............(1)

3 x + 5 y 3 z = 17 3x + 5y - 3z = -17 .............. (2)

4 x y + 2 z = 22 -4x - y + 2z = 22 ............... (3)

Three equations are given above, what is the value of x y + z ? x - y + z?


Try this: All of my problems


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

2 x 6 y + z = 12 2x-6y+z=-12 ( 1 ) \color{#D61F06}(1)

3 x + 5 y 3 z = 17 3x+5y-3z=-17 ( 2 ) \color{#D61F06}(2)

4 x y + 2 z = 22 -4x-y+2z=22 ( 3 ) \color{#D61F06}(3)

I will eliminate x x from ( 1 ) \color{#D61F06}(1) and ( 2 ) \color{#D61F06}(2) . Then I will eliminate x x again from ( 2 ) \color{#D61F06}(2) and ( 3 ) \color{#D61F06}(3) .

{ \{ ( 1 ) \color{#D61F06}(1) × 3 } \times -3\} + + { \{ ( 2 ) \color{#D61F06}(2) × 2 } \times 2\} \large \implies 28 y 9 z = 2 28y-9z=2 ( 4 ) \color{#D61F06}(4)

{ \{ ( 2 ) \color{#D61F06}(2) × 4 } \times 4\} + + { \{ ( 3 ) \color{#D61F06}(3) × 3 } \times 3\} \large \implies 17 y 6 z = 2 17y-6z=-2 ( 5 ) \color{#D61F06}(5)

Now I will eliminate z z from ( 4 ) \color{#D61F06}(4) and ( 5 ) \color{#D61F06}(5) to solve for y y .

{ \{ ( 4 ) \color{#D61F06}(4) × 6 } \times -6\} + + { \{ ( 5 ) \color{#D61F06}(5) × 9 } \times 9\} \large \implies y = 2 y=2

Substitute y = 2 y=2 in ( 4 ) \color{#D61F06}(4) to solve for z z

28 ( 2 ) 9 z = 2 28(2)-9z=2

56 2 = 9 z 56-2=9z

54 = 9 z 54=9z

6 = z 6=z

Substitute z = 6 z=6 and y = 2 y=2 in ( 1 ) \color{#D61F06}(1) to solve for x x .

2 x 6 ( 2 ) + 16 = 12 2x-6(2)+16=-12

2 x = 12 + 12 6 2x=-12+12-6

2 x = 6 2x=-6

x = 3 x=-3

Finally,

x y + z = 3 2 + 6 = x-y+z=-3-2+6= 1 \boxed{1}

Munem Shahriar
Jun 13, 2017

Given that,

2 x 6 y + z = 12 2x - 6y + z = -12 .............(1)

3 x + 5 y 3 z = 17 3x + 5y - 3z = -17 ............(2)

4 x y + 2 z = 22 -4x - y + 2z = 22 ..............(3)

Now, Multiply equation (1) by 3 and equation (2) by 1.

6 x 18 y + 3 z = 36 6x - 18y + 3z = -36 ........(4)

3 x + 5 y 3 z = 17 3x + 5y - 3z = -17 .........(2)

Add equations (4) and (2).

9 x 13 y = 53 9x - 13y = -53 ................(5)

Multiply equation (1) by 2 and equation (3) by 1.

4 x 12 y + 2 z = 24 4x - 12y + 2z = -24 ..............(6)

4 x y + 2 z = 22 -4x - y + 2z = 22 ....................(3)

Subtract equation (3) from equation (6).

8 x 11 y = 46 8x - 11y = -46 .......(7)

Multiply equation (5) by 8 and equation (7) by 9.

72 x 104 y = 424 72x - 104y = -424 .........(8)

72 x 99 y = 414 72x - 99y = -414 ...........(9)

Subtract equation (9) from equation (8).

5 y = 10 y = 2 -5y = -10 ⇒ y = 2

Now we have the value of y y ,

Substitute it back into equation (7) to find x x .

8 x 22 = 46 8 x = 24 x = 3 ⇒8x - 22 = -46 ⇒ 8x = -24 ⇒ x = -3

Now we have the values of y y and x x .

Substitute them back into equation (1) to find z z

6 12 + z = 12 z = 6 ⇒ -6 - 12 + z = -12 ⇒ z = 6

Therefore, x y + z = 3 2 + 6 = 1 x - y + z = -3 - 2 + 6 = 1 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...