Three floors

Calculus Level 3

0 2 x + x + x d x = ? \large{\displaystyle \int^{2}_{0} \left\lfloor x+\left\lfloor x+\left\lfloor x \right\rfloor \right\rfloor \right\rfloor dx= \, ?}


The answer is 3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Dec 23, 2015

We note that:

x + x + x = { 0 for 0 x < 1 3 for 1 x < 2 \left \lfloor x +\left \lfloor x+\lfloor x \rfloor \right \rfloor \right \rfloor = \begin{cases} 0 \text{ for } 0\le x < 1\\ 3 \text{ for } 1\le x<2\end{cases}

Therefore,

0 2 x + x + x = 0 1 0 d x + 1 2 3 d x = 0 + 3 = 3 \begin{aligned} \int_0^2 \left \lfloor x +\left \lfloor x+\lfloor x \rfloor \right \rfloor \right \rfloor & =\int_0^10 d x+\int_1^23 dx \\ & =0+3=\boxed{3} \end{aligned}

Michael Fuller
Dec 25, 2015

As we are integrating between non-negative numbers, x = x \lfloor x \rfloor = x .

Thus we can say x + x + x = 3 x = 3 x \lfloor x +\lfloor x+\lfloor x \rfloor \rfloor \rfloor = \lfloor 3x \rfloor = 3 \lfloor x \rfloor for x 0 x \ge 0 .

Therefore, 0 2 x + x + x d x = 0 2 3 x d x = 3 0 2 x d x \displaystyle \int^{2}_{0} \lfloor x + \lfloor x+\lfloor x \rfloor \rfloor \rfloor dx= \int^{2}_{0} 3\lfloor x \rfloor dx = 3 \int^{2}_{0}\lfloor x \rfloor dx .

Observing the graph for y = x y= \lfloor x \rfloor , we see that 0 2 x d x = 1 \displaystyle \int^{2}_{0} \lfloor x \rfloor dx = 1 .

0 2 x + x + x d x = 3 \Rightarrow \displaystyle \int^{2}_{0} \left \lfloor x +\left \lfloor x+\lfloor x \rfloor \right \rfloor \right \rfloor dx = \large\color{#20A900}{\boxed{3}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...