Three in One: Boom

Calculus Level 5

Let f ( x ) f(x) be a function continuous for all x R x\in \mathbb R except at x = 0 x=0 such that:

  • f ( x ) < 0 , x ( , 0 ) f'(x) < 0, \forall x \in(-\infty,0)
  • f ( x ) > 0 , x ( 0 , ) f'(x) > 0, \forall x \in(0,\infty)
  • lim x 0 + f ( x ) = 2 \lim_{x \to 0^{+}} f(x) = 2
  • lim x 0 f ( x ) = 3 \lim_{x \to 0^{-}} f(x) = 3
  • f ( 0 ) = 4 f(0) = 4

And that:

{ 2 lim x 0 f ( x 3 x 2 ) = μ lim x 0 f ( 2 x 4 x 5 ) lim x 0 + f ( x ) x 2 { 1 cos x f ( x ) } = λ lim x 0 ( 3 f ( x 3 sin 3 ( x ) x 4 ) f ( sin ( x 3 ) x ) ) = φ \begin{cases} \displaystyle 2\lim_{x \to 0}f(x^3 - x^2) =\displaystyle \mu \lim_{x \to 0}f(2x^4 - x^5) \\ \displaystyle \lim_{x \to 0^{+}} \dfrac{f (-x) x^2} {\left \{\frac{1-\cos x}{\lfloor f(x) \rfloor} \right \}} = \lambda \\ \displaystyle \lim_{x \to 0^{-}} \left (\left \lfloor 3f \left(\frac{x^3 - \sin^{3}(x)}{x^4}\right) \right \rfloor - f \left(\left \lfloor \frac{\sin(x^3)}{x} \right \rfloor \right) \right) = \varphi \end{cases}

Find μ λ φ \mu \cdot \lambda \cdot \varphi

Notations:


The answer is 180.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

0 solutions

No explanations have been posted yet. Check back later!

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...