Three numbers

Algebra Level 2

Positive reals a a , b b , and c c are such that a + b + c = 3 a+b+c=3 . Find the maximum value of

a b b c c a \large a^b b^c c^a


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

X X
Jul 3, 2020

By weighted AM-GM inequality, a b b c c a 3 a b + b c + c a 3 \sqrt[3]{a^bb^cc^a}\leq\frac{ab+bc+ca}3

Also by rearrangement inequality we have a 2 + b 2 + c 2 a b + b c + c a a^2+b^2+c^2\geq ab+bc+ca .

So 9 = ( a + b + c ) 2 = a 2 + b 2 + c 2 + 2 ( a b + b c + c a ) 3 ( a b + b c + c a ) , a b + b c + c a 3 1 9=(a+b+c)^2=a^2+b^2+c^2+2(ab+bc+ca)\geq 3(ab+bc+ca), \frac{ab+bc+ca}3\leq1

Hence we obtain a b b c c a ( a b + b c + c a 3 ) 3 1 3 = 1 a^bb^cc^a\leq \left(\frac{ab+bc+ca}3\right)^3 \leq 1^3=1

Equality holds when a = b = c = 1 a=b=c=1

Let us consider b b a a 's, c c b b 's and a a c c 's. Their A. M. is a b + b c + c a a + b + c = a b + b c + c a 3 \dfrac {ab+bc+ca}{a+b+c}=\dfrac {ab+bc+ca}{3}

And G. M. is a b b c c a a + b + c = a b b c c a 3 \sqrt[a+b+c] {a^bb^cc^a}=\sqrt[3] {a^bb^cc^a}

So, a b b c c a 3 a b + b c + c a 3 \sqrt[3] {a^bb^cc^a}\leq \dfrac {ab+bc+ca}{3}

a b b c c a ( a b + b c + c a 3 ) 3 \implies a^bb^cc^a\leq (\frac{ab+bc+ca}{3})^3

Now, ( a b ) 2 + ( b c ) 2 + ( c a ) 2 0 (a-b) ^2+(b-c) ^2+(c-a) ^2\geq 0

a 2 + b 2 + c 2 a b + b c + c a \implies a^2+b^2+c^2\geq ab+bc+ca

( a + b + c ) 2 = a 2 + b 2 + c 2 + 2 ( a b + b c + c a ) 3 ( a b + b c + c a ) \implies (a+b+c)^2=a^2+b^2+c^2+2(ab+bc+ca)\geq 3(ab+bc+ca)

9 3 ( a b + b c + c a ) a b + b c + c a 3 \implies 9\geq 3(ab+bc+ca)\implies ab+bc+ca\leq 3

So a b b c c a ( 3 3 ) 3 a^bb^cc^a\leq (\frac{3}{3})^3 ,

Hence, the maximum value of a b b c c a a^bb^cc^a is 1 \boxed 1 .

Consider the value of ln ( a b b c c a ) = a ln b + b ln c + c ln a \ln (a^bb^cc^a) = a\ln b + b\ln c + c\ln a . We note that ln ( x ) \ln(x) is a concave function. By Jensen's inequality , we have:

a ln b + b ln c + c ln a a + b + c ln ( a b + b c + c a a + b + c ) \begin{aligned} \frac {a\ln b + b\ln c + c\ln a}{a+b+c} \le \ln \left(\frac {ab+bc+ca}{a+b+c} \right) \end{aligned}

By Hölder's inequality :

( a + b + c ) ( b + c + a ) ( 1 + 1 + 1 ) ( a b + b c + c a ) 3 ( 3 ) ( 3 ) ( 3 ) ( a b + b c + c a ) 3 a b + b c + c a 3 \begin{aligned} (a+b+c)(b+c+a)(1+1+1) & \ge (ab+bc+ca)^3 \\ (3)(3)(3) & \ge (ab+bc+ca)^3 \\ \implies ab+bc+ca & \le 3 \end{aligned}

Therefore,

a ln b + b ln c + c ln a 3 ln ( 3 3 ) = ln 1 = 0 a ln b + b ln c + c ln a 0 a b b c c a e 0 = 1 \begin{aligned} \frac {a\ln b + b\ln c + c\ln a}3 & \le \ln \left(\frac 33 \right) = \ln 1 = 0 \\ \implies a\ln b + b\ln c + c\ln a & \le 0 \\ a^b b^c c^a & \le e^0 = \boxed 1 \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...