Three-phase induction motor

In an induction motor three coils are arranged symmetrically about a permanent magnet, which is rotatably mounted. The coils are operated with a three-phase alternating current, so that the currents have a phase difference of 12 0 120^\circ relative to each other. At the location of the permanent magnet, the k k -th coil generates a magnetic field B k ( t ) = B 0 sin ( ω t + ϕ k ) e k , k = 1 , 2 , 3 \vec B_k (t) = B_0 \sin (\omega t + \phi_k) \vec e_k, \quad k = 1,2,3 with an amplitude B 0 = 20 mT B_0 = 20 \, \text{mT} . The unit vectors e k \vec e_k are parallel to the corresponding coil axis and have an angle of 12 0 120^\circ relative to each other. The permanent magnet with the magnetic moment μ = 1000 Nm / T \mu = 1000 \, \text{Nm} / \text{T} is set in uniform rotation by the magnetic field.

What is the maximum torque T max T_\text{max} , that the three-phase induction motor can produce?

T max = 60 Nm T_\text{max} = 60 \,\text{Nm} T max = 10 Nm T_\text{max} = 10 \,\text{Nm} T max = 30 Nm T_\text{max} = 30 \,\text{Nm} T max = 40 Nm T_\text{max} = 40 \,\text{Nm} T max = 20 Nm T_\text{max} = 20 \,\text{Nm} T max = 50 Nm T_\text{max} = 50 \,\text{Nm}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

The unit vectors of the coil directions are e k = ( sin ( ϕ k ) cos ( ϕ k ) ) = ( sin ( 2 3 π ( k 1 ) ) cos ( 2 3 π ( k 1 ) ) ) , k = 1 , 2 , 3 = ( 0 1 ) , ( 3 / 2 1 / 2 ) , ( 3 / 2 1 / 2 ) \begin{aligned} \vec e_k &= \left(\begin{array}{c} - \sin( \phi_k ) \\ \cos( \phi_k ) \end{array} \right)= \left(\begin{array}{c} - \sin( \frac{2}{3} \pi (k-1) ) \\ \cos( \frac{2}{3} \pi (k-1) ) \end{array} \right), \quad k = 1,2,3 \\ &= \left(\begin{array}{c} 0 \\ 1 \end{array} \right), \quad \left(\begin{array}{c} -^{\sqrt{3}}\!/_2 \\ -^1\!/_2 \end{array} \right), \quad \left(\begin{array}{c} ^{\sqrt{3}}\!/_2 \\ -^1\!/_2 \end{array} \right) \end{aligned} where the angle ϕ k = 2 3 π ( k 1 ) \phi_k = \frac{2}{3} \pi (k-1) corresponds also to the phase angle of the currents I k = I 0 sin ( ω t + ϕ k ) I_k = I_0 \sin(\omega t + \phi_k) . The total magnetic field is calculated via a vector sum: B ( t ) = k = 1 3 B k ( t ) = k = 1 3 B 0 sin ( ω t + ϕ k ) e k = k = 1 3 B 0 [ sin ( ω t ) cos ( ϕ k ) + cos ( ω t ) sin ( ϕ k ) ] ( sin ( ϕ k ) cos ( ϕ k ) ) = B 0 sin ( ω t ) ( k = 1 3 cos ( ϕ k ) sin ( ϕ k ) k = 1 3 cos 2 ( ϕ k ) ) + B 0 cos ( ω t ) ( k = 1 3 sin 2 ( ϕ k ) k = 1 3 sin ( ϕ k ) cos ( ϕ k ) ) = B 0 sin ( ω t ) ( 0 3 2 ) + B 0 cos ( ω t ) ( 3 2 0 ) = 3 2 B 0 ( cos ( ω t ) sin ( ω t ) ) \begin{aligned} \vec B(t) &= \sum_{k = 1}^3 \vec B_k(t) \\ &= \sum_{k = 1}^3 B_0 \sin(\omega t + \phi_k) \vec e_k \\ &= \sum_{k = 1}^3 B_0 [\sin(\omega t) \cos(\phi_k) + \cos(\omega t) \sin(\phi_k)] \left(\begin{array}{c} - \sin( \phi_k ) \\ \cos( \phi_k ) \end{array} \right) \\ &= B_0 \sin(\omega t) \left(\begin{array}{c} - \sum_{k = 1}^3 \cos(\phi_k) \sin( \phi_k ) \\ \sum_{k = 1}^3 \cos^2( \phi_k ) \end{array} \right) + B_0 \cos(\omega t) \left(\begin{array}{c} - \sum_{k = 1}^3 \sin^2(\phi_k) \\ \sum_{k = 1}^3 \sin(\phi_k)\cos( \phi_k ) \end{array} \right)\\ &= B_0 \sin(\omega t) \left(\begin{array}{c} 0 \\ \frac{3}{2} \end{array} \right) + B_0 \cos(\omega t) \left(\begin{array}{c} \frac{3}{2} \\ 0 \end{array} \right) \\ &= \frac{3}{2} B_0 \left(\begin{array}{c} \cos(\omega t) \\ \sin(\omega t) \end{array} \right) \end{aligned} In line three, we used the addition theorem of sine. The total magnetic field B \vec B has an amplitude of B = 3 2 B 0 |\vec B| = \frac {3} {2} B_0 and makes a circular motion with the frequency ω \omega of the alternating current. At idle, the magnet simply follows the circular motion of the magnetic field, so that μ B \vec \mu \parallel \vec B . Under load, both vectors point in different directions with an angle α = ( B , μ ) \alpha = \angle (\vec B, \vec \mu) between the two. The torque exerted by the engine results T = μ × B = 3 2 μ B 0 sin ( α ) T = |\vec \mu \times \vec B| = \frac{3}{2} \mu B_0 \sin(\alpha) A right angle α = 9 0 \alpha = 90^\circ results in a maximal torque T max = 3 2 μ B 0 = 3 2 1000 2 1 0 2 N m = 30 N m T_\text{max} = \frac{3}{2} \mu B_0 = \frac{3}{2} \cdot 1000 \cdot 2\cdot 10^{-2} \,\mathrm{Nm} = 30 \,\mathrm{Nm}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...