Three-Phase TLINE - Time Domain

A balanced three-phase voltage source feeds a balanced set of load resistors through a lossless transmission line. The three phases of the transmission line are magnetically coupled, which can be modeled in the time-domain using self and mutual inductances as follows:

V A S ( t ) L S I ˙ A L M I ˙ B L M I ˙ C = V A R ( t ) V B S ( t ) L M I ˙ A L S I ˙ B L M I ˙ C = V B R ( t ) V C S ( t ) L M I ˙ A L M I ˙ B L S I ˙ C = V C R ( t ) V_{AS} (t) - L_S \dot{I}_A - L_M \dot{I}_B - L_M \dot{I}_C = V_{AR}(t) \\ V_{BS}(t) - L_M \dot{I}_A - L_S \dot{I}_B - L_M \dot{I}_C = V_{BR}(t) \\ V_{CS}(t) - L_M \dot{I}_A - L_M \dot{I}_B - L_S \dot{I}_C = V_{CR}(t)

In the circuit, the star (neutral) point of the voltage sources is taken as the voltage reference. By convention, the currents flow across the transmission line from left to right. The system parameters are:

V A S ( t ) = 100 sin ( ω t ) V B S ( t ) = 100 sin ( ω t 2 π / 3 ) V C S ( t ) = 100 sin ( ω t + 2 π / 3 ) ω = 120 π L S = 50 / ω L M = 30 / ω R = 1 V_{AS}(t) = 100 \, \sin(\omega t) \\ V_{BS}(t) = 100 \, \sin(\omega t - 2 \pi /3) \\ V_{CS}(t) = 100 \, \sin(\omega t + 2 \pi /3) \\ \omega = 120 \pi \\ L_S = 50/\omega \\ L_M = 30/\omega \\ R = 1

At time t = 0 t = 0 , currents ( I A , I B , I C ) (I_A, I_B, I_C) are all zero. Let I 1 I_1 be the maximum (greatest) instantaneous value of I A I_A over all time. Let I 2 I_2 be the AC-steady-state peak value of I A I_A , after all of the initial transients have died out.

What is I 1 + I 2 I_1 + I_2 ?

Note: I 1 I_1 and I 2 I_2 are both positive numbers


The answer is 14.27.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Karan Chatrath
Nov 14, 2019

The first step is writing down the circuit equations by applying Kirchoff's laws.

V A S I A R = ( V A S V A R ) V_{AS} - I_AR = (V_{AS} - V_{AR}) V B S I B R = ( V B S V B R ) V_{BS} - I_BR = (V_{BS} - V_{BR}) V C S I C R = ( V C S V C R ) V_{CS} - I_CR = (V_{CS} - V_{CR})

Replacing the equation V A S V A R V_{AS} - V_{AR} by the given transmission line model, in each equation, re-writing in a matrix form, and simplifying gives:

[ I ˙ A I ˙ B I ˙ C ] = R [ L S L M L M L M L S L M L M L M L S ] 1 [ I A I B I C ] + [ L S L M L M L M L S L M L M L M L S ] 1 [ V A S V B S V C S ] \left[\begin{matrix} \dot{I}_{A} \\\dot{I}_{B} \\\dot{I}_{C} \end{matrix}\right] = -R \left[\begin{matrix} L_S&L_M&L_M\\L_M&L_S&L_M\\L_M&L_M&L_S \end{matrix}\right]^{-1} \left[\begin{matrix} I_{A} \\I_{B} \\I_{C} \end{matrix}\right] + \left[\begin{matrix} L_S&L_M&L_M\\L_M&L_S&L_M\\L_M&L_M&L_S \end{matrix}\right]^{-1}\left[\begin{matrix} V_{AS} \\V_{BS} \\V_{CS} \end{matrix}\right]

In shorthand notation:

I ˙ = A I + B V \boxed{\dot{I} = AI + BV} A = R [ L S L M L M L M L S L M L M L M L S ] 1 ; B = [ L S L M L M L M L S L M L M L M L S ] 1 A = -R \left[\begin{matrix} L_S&L_M&L_M\\L_M&L_S&L_M\\L_M&L_M&L_S \end{matrix}\right]^{-1} \ ; \ B = \left[\begin{matrix} L_S&L_M&L_M\\L_M&L_S&L_M\\L_M&L_M&L_S \end{matrix}\right]^{-1} I = [ I A I B I C ] ; V = [ V A S V B S V C S ] I = \left[\begin{matrix} I_{A} \\I_{B} \\I_{C} \end{matrix}\right] \ ; \ V = \left[\begin{matrix} V_{AS} \\V_{BS} \\V_{CS} \end{matrix}\right] I A ( 0 ) = 0 ; I B ( 0 ) = 0 ; I C ( 0 ) = 0 I_A(0) = 0 \ ; \ I_B(0) = 0 \ ; \ I_C(0) = 0

The given set of linear differential equations can be solved analytically, however, a numerical route is chosen. The coding details are left out for now but the solution I A ( t ) I_A(t) looks as such:

One can see that the transient response dies out after approximately 0.2 seconds. From this array of time-varying data as shown in the plot, the values asked for can be obtained.

The peak current is 9.2715 A while the peak steady-state current is 4.9946 A (almost 5 A). The required answer is 14.2662 A \boxed{14.2662 \ A} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...