Three roots in equation

Algebra Level 2

Let K K , L L , and M M be the roots of the equation 4 x 3 + 5 x 2 9 x + 12 = 0 4x^3 + 5x^2 -9x + 12 = 0 .

Find K 8 + L 8 + M 8 K^8+L^8+M^8 .


The answer is 1939.3330.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

First solving it for general.

K + L + M = α K + L + M = \alpha

K L + L M + K M = β KL + LM + KM = \beta

K L M = γ KLM = \gamma

( K + L + M ) 2 = K 2 + L 2 + M 2 + 2 ( K L + L M + K M ) (K + L + M)^2 = K^2 + L^2 + M^2 + 2(KL + LM + KM)

K 2 + L 2 + M 2 = α 2 2 β ( = α 1 ) \Rightarrow K^2 + L^2 + M^2 = \alpha^2 - 2\beta\hspace{15pt} (= \alpha_1)

( K L + L M + K M ) 2 = K 2 L 2 + L 2 M 2 + K 2 M 2 + 2 K L M ( K + L + M ) (KL + LM + KM)^2 = K^2L^2 + L^2M^2 + K^2M^2 + 2KLM(K + L + M)

K 2 L 2 + L 2 M 2 + K 2 M 2 = β 2 2 α γ ( = β 1 ) \Rightarrow K^2L^2 + L^2M^2 + K^2M^2 = \beta^2 - 2\alpha\gamma \hspace{15pt}(= \beta_1)

K 2 L 2 M 2 = ( K L M ) 2 = γ 2 ( = γ 1 ) K^2L^2M^2 = (KLM)^2 = \gamma^2 \hspace{15pt}(= \gamma_1)

So, now we have

K 2 + L 2 + M 2 = α 1 K^2 + L^2 + M^2 = \alpha_1

K 2 L 2 + L 2 M 2 + K 2 M 2 = β 1 K^2L^2 + L^2M^2 + K^2M^2 = \beta_1

K 2 L 2 M 2 = γ 1 K^2L^2M^2 = \gamma_1

Doing the same thing again and again we can get

K 2 n + L 2 n + M 2 n K^{2^n} + L^{2^n} + M^{2^n} for any n 0 , n Z n \geq 0\;,\,n\in\mathbb{Z}

Taking α = 9 4 \alpha = \Large\frac{-9}{4}

β = 5 4 \beta = \Large\frac{-5}{4}

γ = 3 \gamma = -3

Doing the same procedure for 3 3 times we can get

K 8 + L 8 + M 8 = 127096129 25 6 2 K^8 + L^8 + M^8 = \large\frac{127096129}{256^2} 1939.333 \approx 1939.333

Chew-Seong Cheong
May 20, 2020

The problem can be solved using Newton's sums method. Since the roots of 4 x 3 + 5 x 2 9 x + 12 = 0 4x^3+5x^2-9x+12=0 are K K , L L , M M , and d d . Then by Vieta's formula , S 1 = K + L + M = 5 4 S_1 = K+L+M = - \frac 54 , S 2 = K L + L M + M K = 9 4 S_2 = KL+LM+MK = -\frac 94 , S 3 = K L M = 3 S_3 = KLM = - 3 . Let P n = K n + L n + M n P_n = K^n+L^n+M^n , where n n is a positive integer and we need to find P 8 P_8 . Then we have:

P 1 = S 1 = 5 4 P 2 = S 1 P 1 2 S 2 = 97 16 P 3 = S 1 P 2 S 2 P 1 + 3 S 3 = 1241 64 P 4 = S 1 P 3 S 2 P 2 + S 3 P 1 = 10657 256 P 5 = S 1 P 4 S 2 P 3 + S 3 P 2 = 116585 1024 P 6 = S 1 P 5 S 2 P 4 + S 3 P 3 = 1204849 4096 P 7 = S 1 P 6 S 2 P 5 + S 3 P 4 = 12267449 16384 P 8 = S 1 P 7 S 2 P 6 + S 3 P 5 = 127096129 65536 \begin{array} {ll} P_1 = S_1 & = -\dfrac 54 \\ P_2 = S_1P_1 - 2S_2 & = \dfrac {97}{16} \\ P_3 = S_1P_2 - S_2P_1 + 3S_3 & = -\dfrac {1241}{64} \\ P_4 = S_1P_3 - S_2P_2 + S_3P_1 & = \dfrac {10657}{256} \\ P_5 = S_1P_4 - S_2P_3 + S_3P_2 & = -\dfrac {116585}{1024} \\ P_6 = S_1P_5 - S_2P_4 + S_3P_3 & = \dfrac {1204849}{4096} \\ P_7 = S_1P_6 - S_2P_5 + S_3P_4 & = -\dfrac {12267449}{16384} \\ P_8 = S_1P_7 - S_2P_6 + S_3P_5 & = \dfrac {127096129}{65536} \end{array}

Therefore P 8 = 127096129 65536 1939.333 P_8 = \dfrac {127096129}{65536} \approx \boxed{1939.333} . We can do the computation easily with an Excel spreadsheet.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...