Three Sum

Calculus Level 5

S n = i = 0 n 1 j = 0 i 1 k = 0 j 1 ( i + j + k ) \large \displaystyle S_n={\color{#D61F06}\sum_{i=0}^{n-1}}{\color{#20A900}\sum_{j=0}^{i-1}}{\color{#3D99F6}\sum_{k=0}^{j-1}}({\color{#D61F06}i}+{\color{#20A900}j}+{\color{#3D99F6}k}) 1 S 3 + 1 S 4 + 1 S 5 + = A 2 π 2 B \dfrac{1}{S_3}+\dfrac{1}{S_4}+\dfrac{1}{S_5}+\cdots=\text{A}-\dfrac{2\pi^2}{\text{B}}

A \text{A} and B \text{B} are positive integers. Find A + B \text{A}+\text{B} .


The answer is 10.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Guilherme Niedu
Feb 9, 2018

S n = i = 0 n 1 j = 0 i 1 k = 0 j 1 ( i + j + k ) \large \displaystyle S_n = \sum_{i=0}^{n-1} \sum_{j=0}^{i-1} \sum_{k=0}^{j-1} (i + j + k)

Since i = 0 n i = n ( n + 1 ) 2 \color{#20A900} \sum_{i=0}^n i = \frac{n(n+1)}{2} :

S n = i = 0 n 1 j = 0 i 1 i j + j 2 + ( j 1 ) j 2 \large \displaystyle S_n = \sum_{i=0}^{n-1} \sum_{j=0}^{i-1} ij + j^2 + \frac{(j-1)j}{2}

S n = i = 0 n 1 j = 0 i 1 i j + 3 j 2 2 j 2 \large \displaystyle S_n = \sum_{i=0}^{n-1} \sum_{j=0}^{i-1} ij + \frac{3j^2}{2} - \frac{j}{2}

Since i = 0 n i 2 = n ( n + 1 ) ( 2 n + 1 ) 6 \color{#20A900} \sum_{i=0}^n i^2 = \frac{n(n+1)(2n+1)}{6} :

S n = i = 0 n 1 i [ ( i 1 ) i 2 ] + 3 2 [ ( i 1 ) i ( 2 i 1 ) 6 ] ( i 1 ) i 4 \large \displaystyle S_n = \sum_{i=0}^{n-1} i \left [ \frac{(i-1)i}{2} \right ] + \frac{3}{2} \left [ \frac{(i-1)i(2i-1)}{6} \right ] - \frac{(i-1)i}{4}

S n = i = 0 n 1 i 3 3 i 2 2 + i 2 \large \displaystyle S_n = \sum_{i=0}^{n-1} i^3 - \frac{3i^2}{2} + \frac{i}{2}

Since i = 0 n i 3 = [ ( n + 1 ) n 2 ] 2 \color{#20A900} \sum_{i=0}^n i^3 = \left [ \frac{(n+1)n}{2} \right ]^2 :

S n = ( n 1 ) 2 n 2 ( n 1 ) n ( 2 n 1 ) + ( n 1 ) n 4 \large \displaystyle S_n = \frac{(n-1)^2 n^2 - (n-1)n(2n-1) + (n-1)n}{4}

S n = ( n 1 ) n [ ( n 1 ) n ( 2 n 1 ) + 1 ] 4 \large \displaystyle S_n = \frac{(n-1)n [ (n-1)n - (2n-1) + 1 ]}{4}

S n = ( n 1 ) n [ ( n 2 3 n + 2 ) ] 4 \large \displaystyle S_n = \frac{(n-1)n [ (n^2 - 3n + 2) ]}{4}

S n = n ( n 2 ) ( n 1 ) 2 4 \color{#20A900} \boxed{ \large \displaystyle S_n = \frac{n(n-2)(n-1)^2}{4} }

We're looking for:

S = n = 3 1 S n \large \displaystyle S = \sum_{n=3}^{\infty} \frac{1}{S_n}

S = 4 n = 3 1 n ( n 2 ) ( n 1 ) 2 \large \displaystyle S = 4 \sum_{n=3}^{\infty} \frac{1}{n(n-2)(n-1)^2}

By partial fractions:

S = 4 [ n = 3 1 2 ( 1 n 2 1 n ) n = 3 1 ( n 1 ) 2 ] \large \displaystyle S = 4 \left [ \sum_{n=3}^{\infty} \frac12 \left (\frac{1}{n-2} - \frac{1}{n} \right ) - \sum_{n=3}^{\infty} \frac{1}{(n-1)^2} \right ]

The first sum will telescope, and only the first two terms of the first fraction will remain. On the second sum, we make m = n 1 m = n-1 :

S = 4 [ 1 2 ( 1 + 1 2 ) m = 2 1 m 2 ] \large \displaystyle S = 4 \left [ \frac12 \left (1 + \frac12 \right ) - \sum_{m=2}^{\infty} \frac{1}{m^2} \right ]

S = 4 [ 3 4 ( m = 1 1 m 2 1 ) ] \large \displaystyle S = 4 \left [\frac34 - \left ( \sum_{m=1}^{\infty} \frac{1}{m^2} - 1 \right ) \right ]

S = 4 [ 7 4 π 2 6 ] \large \displaystyle S = 4 \left [ \frac74 - \frac{\pi ^2}{6} \right ]

S = 7 2 π 2 3 \color{#20A900} \boxed{ \large \displaystyle S = 7 - \frac{2\pi ^2}{3} }

Thus:

A = 7 , B = 3 , A + B = 10 \color{#3D99F6} \large \displaystyle A = 7, B = 3, \boxed{\large \displaystyle A+B=10}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...