⎩ ⎪ ⎨ ⎪ ⎧ x + y = 4 z − 1 y + z = 4 x − 1 z + x = 4 y − 1
Find the sum of all values of x + y + z such that x , y , z satisfy the system of equations above.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Adding all three equations,
2 x + 2 y + 2 z = 4 z − 1 + 4 x − 1 + 4 y − 1
2 x − 4 x − 1 + 2 y − 4 y − 1 + 2 z − 4 z − 1 = 0
now, for x (similar for y and z)
2x-√(4x-1)=2[x-√(x-1/4)]
=2[(√(x-1/4))^2+(1/2)^2-2*1/2 √(x-1/4)]
=2(√(x-1/4) - 1/2)^2
Similarly all 3 variables give three squares whose sum is zero
Thus each square is zero.
solving gives each variable as 0.5
Adding them gives 1.5
Method II:
Square all terms and add,
x 2 + y 2 + 2 x y + y 2 + z 2 + 2 y z + z 2 + x 2 + 2 x z = 4 x + 4 y + 4 z − 1 − 1 − 1
Here,
x 2 + y 2 + 1 + 2 x y − 2 x − 2 y
can be replaced by
( x + y − 1 ) 2
similarly for all other three squares.
( x + y − 1 ) 2 + ( z + y − 1 ) 2 + ( x + z − 1 ) 2 =0
Since their sum is zero, each of them is zero.
x + y = 1
4 z − 1 = 1
4 z = 2
z = 0 . 5
similarly,
x=0.5 and y = 0.5
Their sum is 1.5!!!
Problem Loading...
Note Loading...
Set Loading...
Let: u = 4 z − 1 , v = 4 x − 1 , w = 4 y − 1
Then: z = 4 u 2 + 1 , x = 4 v 2 + 1 , y = 4 w 2 + 1
Substitute these values into the original system, we have:
⎩ ⎨ ⎧ v 2 + w 2 + 2 = 4 u w 2 + v 2 + 2 = 4 v u 2 + v 2 + 2 = 4 w
By adding these equations, we get:
2 u 2 + 2 v 2 + 2 w 2 + 6 = 4 u + 4 v + 4 w
⇔ 2 ( u − 1 ) 2 + 2 ( v − 1 ) 2 + 2 ( w − 1 ) 2 = 0
⇔ u = v = w = 1
⇔ x = y = z = 2 1
Hence, x + y + z = 2 3