Do I need to plot this?

Algebra Level 4

{ x + y = 4 z 1 y + z = 4 x 1 z + x = 4 y 1 \begin{cases}{x+y=\sqrt{4z-1}} \\ {y+z=\sqrt{4x-1}} \\ {z+x=\sqrt{4y-1}}\end{cases}

Find the sum of all values of x + y + z x+y+z such that x , y , z x,y,z satisfy the system of equations above.


The answer is 1.5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Let: u = 4 z 1 , v = 4 x 1 , w = 4 y 1 u = \sqrt {4z - 1} ,v = \sqrt {4x - 1} ,w = \sqrt {4y - 1}

Then: z = u 2 + 1 4 , x = v 2 + 1 4 , y = w 2 + 1 4 z = \dfrac{{{u^2} + 1}}{4},x = \dfrac{{{v^2} + 1}}{4},y = \dfrac{{{w^2} + 1}}{4}

Substitute these values into the original system, we have:

{ v 2 + w 2 + 2 = 4 u w 2 + v 2 + 2 = 4 v u 2 + v 2 + 2 = 4 w \left\{ \begin{array}{l} {v^2} + {w^2} + 2 = 4u \\ {w^2} + {v^2} + 2 = 4v \\ {u^2} + {v^2} + 2 = 4w \\ \end{array} \right.

By adding these equations, we get:

2 u 2 + 2 v 2 + 2 w 2 + 6 = 4 u + 4 v + 4 w 2{u^2} + 2{v^2} + 2{w^2} + 6 = 4u + 4v + 4w

2 ( u 1 ) 2 + 2 ( v 1 ) 2 + 2 ( w 1 ) 2 = 0 \Leftrightarrow 2{(u - 1)^2} + 2{(v - 1)^2} + 2{(w - 1)^2} = 0

u = v = w = 1 \Leftrightarrow u = v = w = 1

x = y = z = 1 2 \Leftrightarrow x = y = z = \dfrac{1}{2}

Hence, x + y + z = 3 2 x+y + z = \dfrac{3}{2}

Very nice explanation!

Calvin Lin Staff - 6 years, 2 months ago

Adding all three equations,

2 x + 2 y + 2 z = 4 z 1 + 4 x 1 + 4 y 1 2x+2y+2z=\sqrt{4z-1}+\sqrt{4x-1}+\sqrt{4y-1}

2 x 4 x 1 + 2 y 4 y 1 + 2 z 4 z 1 = 0 2x-\sqrt{4x-1}+2y-\sqrt{4y-1}+2z-\sqrt{4z-1}=0

now, for x (similar for y and z)

2x-√(4x-1)=2[x-√(x-1/4)]

=2[(√(x-1/4))^2+(1/2)^2-2*1/2 √(x-1/4)]

=2(√(x-1/4) - 1/2)^2

Similarly all 3 variables give three squares whose sum is zero

Thus each square is zero.

solving gives each variable as 0.5

Adding them gives 1.5

Method II:

Square all terms and add,

x 2 + y 2 + 2 x y + y 2 + z 2 + 2 y z + z 2 + x 2 + 2 x z = 4 x + 4 y + 4 z 1 1 1 x^{2}+y^{2}+2xy+y^2+z^{2}+2yz+z^{2}+x^{2}+2xz=4x+4y+4z-1-1-1

Here,

x 2 + y 2 + 1 + 2 x y 2 x 2 y x^{2}+y^{2}+1+2xy-2x-2y

can be replaced by

( x + y 1 ) 2 (x+y-1)^{2}

similarly for all other three squares.

( x + y 1 ) 2 (x+y-1)^{2} + ( z + y 1 ) 2 (z+y-1)^{2} + ( x + z 1 ) 2 (x+z-1)^{2} =0

Since their sum is zero, each of them is zero.

x + y = 1 x+y=1

4 z 1 = 1 \sqrt{4z-1}=1

4 z = 2 4z=2

z = 0.5 z=0.5

similarly,

x=0.5 and y = 0.5

Their sum is 1.5!!!

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...