Three years, back and forth #2

f ( x ) = x x x x x \large f(x)=x^{x^{x^{x^{x}}}}

For f ( x ) f(x) as defined above, find last four digits of f ( 2015 ) + f ( 2018 ) + f ( 2021 ) f(2015)+f(2018)+f(2021) .

Easier version

This problem is original and belongs to the set Number theory best problems .


The answer is 3572.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Mark Hennings
Mar 4, 2018

Since 2015 1 ( m o d 16 ) 2015 \equiv -1 \pmod{16} and the tetration 4 2015 = 201 5 201 5 201 5 2015 {}^42015 = 2015^{2015^{2015^{2015}}} is odd, we see that f ( 2015 ) = 5 2015 1 ( m o d 16 ) f(2015) = {}^52015 \equiv -1 \pmod{16} . On the other hand, 2015 0 ( m o d 5 ) 2015 \equiv 0 \pmod{5} , and hence f ( 2015 ) 0 ( m o d 625 ) f(2015) \equiv 0 \pmod{625} . Using the Chinese Remainder Theorem, we deduce that f ( 2015 ) 9375 ( m o d 10000 ) f(2015) \equiv 9375 \pmod{10000} .

Since 2018 2018 is even, it is clear that f ( 2018 ) 0 ( m o d 16 ) f(2018) \equiv 0 \pmod{16} . Note now that 201 8 4 1 ( m o d 25 ) 2018^4 \equiv 1 \pmod{25} , so that 201 8 100 1 ( m o d 625 ) 2018^{100} \equiv 1 \pmod{625} . Since it is clear that 3 2018 0 ( m o d 4 ) {}^32018 \equiv 0 \pmod{4} , we deduce that 4 2018 1 ( m o d 25 ) {}^42018 \equiv 1 \pmod{25} . On the other hand it is clear that 4 2018 0 ( m o d 4 ) {}^42018 \equiv 0 \pmod{4} . Using the Chinese Remainder Theorem, we see that 4 2018 76 ( m o d 100 ) {}^42018 \equiv 76 \pmod{100} , and hence f ( 2018 ) 201 8 76 401 ( m o d 625 ) f(2018) \equiv 2018^{76} \equiv 401 \pmod{625} .Using the Chinese Remainder Theorem again, we have that f ( 2018 ) 9776 ( m o d 10000 ) f(2018) \equiv 9776 \pmod{10000} .

Note that 2021 1 ( m o d 4 ) 2021 \equiv 1 \pmod{4} and that 202 1 4 1 ( m o d 16 ) 2021^4 \equiv 1 \pmod{16} . Thus it is clear that 4 2021 1 ( m o d 4 ) {}^42021 \equiv 1 \pmod{4} and hence that f ( 2021 ) 2021 5 ( m o d 16 ) f(2021) \equiv 2021 \equiv 5 \pmod{16} . Now note that 202 1 5 1 ( m o d 25 ) 2021^5 \equiv 1 \pmod{25} , 202 1 25 1 ( m o d 125 ) 2021^{25} \equiv 1 \pmod{125} and 202 1 125 1 ( m o d 625 ) 2021^{125} \equiv 1 \pmod{625} . Since 202 1 2021 1 ( m o d 5 ) 2021^{2021} \equiv 1 \pmod{5} , we deduce that 3 2021 2021 21 ( m o d 25 ) {}^32021 \equiv 2021 \equiv 21 \pmod{25} , so that 4 2021 202 1 21 46 ( m o d 125 ) {}^42021 \equiv 2021^{21} \equiv 46 \pmod{125} , and thus f ( 2021 ) 202 1 46 46 ( m o d 625 ) f(2021) \equiv 2021^{46} \equiv 46 \pmod{625} . Using the Chinese Remainder Theorem one more time, f ( 2021 ) 4421 ( m o d 10000 ) f(2021) \equiv 4421 \pmod{10000} .

Thus f ( 2015 ) + f ( 2018 ) + f ( 2021 ) 9375 + 9776 + 4421 3572 ( m o d 10000 ) f(2015) + f(2018) + f(2021) \; \equiv \; 9375 + 9776 + 4421 \; \equiv \; \boxed{3572} \pmod{10000}

Amazing and awesome solution, thank you.

Shreyansh Mukhopadhyay - 3 years, 3 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...