Three years, back and forth #4

If

N 1 = 201 5 201 4 201 3 201 2 201 1 201 0 N 2 = 201 8 201 7 201 6 201 5 201 4 201 3 N 3 = 202 1 202 0 201 9 201 8 201 7 201 6 \large \begin{aligned} N_1 & =2015^{2014^{2013^{2012^{2011^{2010^{\cdots}}}}}} \\ N_2 & =2018^{2017^{2016^{2015^{2014^{2013^{\cdots}}}}}} \\ N_3 & =2021^{2020^{2019^{2018^{2017^{2016^{\cdots}}}}}} \end{aligned}

What are the last 4 digits of N 1 + N 2 + N 3 N_1+N_2+N_3 ?


For more try this set .


The answer is 7394.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Matt Janko
Dec 27, 2020

The values in question are exponential factorials. Let t n t_n denote the n n th exponential factorial. We wish to compute t 2015 t_{2015} , t 2018 t_{2018} , and t 2021 t_{2021} modulo 10000 10000 .

For t 2015 t_{2015} , we will consider the congruences t 2015 201 5 t 2014 ( m o d 16 ) and t 2015 201 5 t 2014 ( m o d 625 ) . t_{2015} \equiv 2015^{t_{2014}} \pmod {16} \ \ \ \ \ \text{and}\ \ \ \ \ t_{2015} \equiv 2015^{t_{2014}} \pmod {625}. Notice that 201 5 2 1 ( m o d 16 ) 2015^2 \equiv 1 \pmod{16} and t 2014 t_{2014} is even. Also notice that 5 5 is a factor of 2015 2015 and t 2014 t_{2014} is sufficiently large so that 5 4 = 625 5^4 = 625 is a factor of 201 5 t 2014 2015^{t_{2014}} . These observations imply t 2015 1 ( m o d 16 ) and t 2015 0 ( m o d 625 ) . t_{2015} \equiv 1 \pmod{16} \ \ \ \ \ \text{and}\ \ \ \ \ t_{2015} \equiv 0 \pmod{625}. By the Chinese remainder theorem, t 2015 625 ( m o d 10000 ) , t_{2015} \equiv 625 \pmod{10000}, so the last four digits of t 2015 t_{2015} are 0625 0625 .

For t 2018 t_{2018} , we will consider the congruences t 2018 201 8 t 2017 ( m o d 16 ) and t 2018 201 8 t 2017 ( m o d 625 ) . t_{2018} \equiv 2018^{t_{2017}} \pmod {16} \ \ \ \ \ \text{and} \ \ \ \ \ t_{2018} \equiv 2018^{t_{2017}} \pmod {625}. In this case, 2 2 is a factor of 2018 2018 , and t 2017 t_{2017} is sufficiently large so that 2 4 = 16 2^4 = 16 is a factor of 201 8 t 2017 2018^{t_{2017}} . Furthermore, we can check that 201 8 100 1 ( m o d 625 ) 2018^{100} \equiv 1 \pmod{625} . These observations imply t 2018 0 ( m o d 16 ) and t 2018 201 8 r ( m o d 625 ) (1) t_{2018} \equiv 0 \pmod {16} \ \ \ \ \ \text{and}\ \ \ \ \ t_{2018} \equiv 2018^r \pmod {625} \tag{1} for any value r r satisfying r t 2017 201 7 t 2016 ( m o d 100 ) . r \equiv t_{2017} \equiv 2017^{t_{2016}} \pmod{100}. To find a suitable value of r r , we can consider the congruences r 201 7 t 2016 ( m o d 4 ) and r 201 7 t 2016 ( m o d 25 ) . r \equiv 2017^{t_{2016}} \pmod 4 \ \ \ \ \ \text{and}\ \ \ \ \ r \equiv 2017^{t_{2016}} \pmod {25}. Notice that 201 7 2 1 ( m o d 4 ) 2017^2 \equiv 1 \pmod 4 and t 2016 t_{2016} is an even number. Also check that 201 7 20 1 ( m o d 25 ) 2017^{20} \equiv 1 \pmod {25} . This means r 201 7 2 k 1 k 1 ( m o d 4 ) and r 201 7 r ( m o d 25 ) (2) r \equiv 2017^{2k} \equiv 1^k \equiv 1 \pmod 4 \ \ \ \ \ \text{and}\ \ \ \ \ r \equiv 2017^{r'} \pmod{25} \tag{2} for any value r r' satisfying r t 2016 201 6 t 2015 ( m o d 20 ) . r' \equiv t_{2016} \equiv 2016^{t_{2015}} \pmod {20}. Since 2016 0 ( m o d 4 ) 2016 \equiv 0 \pmod 4 and 2016 1 ( m o d 5 ) 2016 \equiv 1 \pmod 5 , we can put r 0 t 2015 0 ( m o d 4 ) and r 1 t 2015 1 ( m o d 5 ) . (3) r' \equiv 0^{t_{2015}} \equiv 0 \pmod 4 \ \ \ \ \ \text{and}\ \ \ \ \ r' \equiv 1^{t_{2015}} \equiv 1 \pmod 5. \tag{3} When we apply the Chinese remainder theorem to ( 3 ) (3) , ( 2 ) (2) , and ( 1 ) (1) , we find r 16 ( m o d 20 ) r' \equiv 16 \pmod{20} and thus r 1 ( m o d 4 ) and r 201 7 16 6 ( m o d 25 ) , r \equiv 1 \pmod 4 \ \ \ \ \ \text{and}\ \ \ \ \ r \equiv 2017^{16} \equiv 6 \pmod {25}, so r 81 ( m o d 100 ) r \equiv 81 \pmod{100} and t 2018 0 ( m o d 16 ) and t 2018 201 8 81 518 ( m o d 625 ) . t_{2018} \equiv 0 \pmod {16} \ \ \ \ \ \text{and}\ \ \ \ \ t_{2018} \equiv 2018^{81} \equiv 518 \pmod {625}. This means t 2018 6768 ( m o d 10000 ) , t_{2018} \equiv 6768 \pmod{10000}, so the last four digits of t 2018 t_{2018} are 6768 6768 .

Finally, for t 2021 = 202 1 t 2020 t_{2021} = 2021^{t_{2020}} , we can apply Euler's theorem because 2021 2021 and 10000 10000 are relatively prime. Since ϕ ( 10000 ) = 4000 \phi(10000) = 4000 , t 2020 r ( m o d 4000 ) t 2021 202 1 t 2020 202 1 r ( m o d 10000 ) . t_{2020} \equiv r \pmod{4000} \implies t_{2021} \equiv 2021^{t_{2020}} \equiv 2021^r \pmod{10000}. Notice that 4000 = 2 5 5 3 4000 = 2^5 \cdot 5^3 , and both 2 2 and 5 5 are prime factors of 2020 2020 . Since t 2019 t_{2019} is quite large, 4000 4000 must be a factor of t 2020 = 202 0 t 2019 t_{2020} = 2020^{t_{2019}} and thus t 2020 0 ( m o d 4000 ) t 2021 202 1 0 1 ( m o d 10000 ) . t_{2020} \equiv 0 \pmod{4000} \implies t_{2021} \equiv 2021^0 \equiv 1 \pmod{10000}. This means the last four digits of t 2021 t_{2021} are 0001 0001 .

Therefore, the desired value is 625 + 6768 + 1 = 7394 . 625 + 6768 + 1 = \boxed{7394}.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...