Threshing floor sequence

Algebra Level 4

Let x ⌊x⌋ denote the greatest integer less than or equal to x x . If a n a n = 49 n + 2 n + 1 { a }_{ n }\left\lfloor { a }_{ n } \right\rfloor ={ 49 }^{ n }+2n+1 , find the value of 2 S + 1 2S+1 , where S = n = 1 2017 a n 2 S=\left\lfloor \sum _{ n=1 }^{ 2017 }{ \frac { { a }_{ n } }{ 2 } } \right\rfloor .

7 ( 7 2015 1 ) 7 \frac{7(7^{2015}-1)}{7} 7 ( 7 2017 1 ) 6 \frac{7(7^{2017}-1)}{6} 7 ( 7 2014 1 ) 7 \frac{7(7^{2014}-1)}{7} 7 ( 7 2016 1 ) 6 \frac{7(7^{2016}-1)}{6} 7 ( 7 2019 1 ) 8 \frac{7(7^{2019}-1)}{8} 7 ( 7 2018 1 ) 8 \frac{7(7^{2018}-1)}{8}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Mark Hennings
May 28, 2019

We have a n 2 a n a n = 4 9 n + 2 n + 1 > 4 9 n a_n^2 \; \ge \; a_n\lfloor a_n \rfloor \; = \; 49^n + 2n + 1 \; > \; 49^n and hence a n 7 n a_n \ge 7^n , so that a n 7 n \lfloor a_n \rfloor \ge 7^n . Moreover a n 2 a n a n = 4 9 n + 2 n + 1 < 4 9 n + 2 × 7 n + 1 = ( 7 n + 1 ) 2 \lfloor a_n\rfloor^2 \; \le \; a_n\lfloor a_n\rfloor \; = \; 49^n + 2n + 1 \; < \; 49^n + 2\times 7^n + 1 \; = \; (7^n + 1)^2 so that a n < 7 n + 1 \lfloor a_n \rfloor < 7^n + 1 . Thus a n = 7 n \lfloor a_n \rfloor = 7^n , so that a n = 7 n + 2 n + 1 7 n a_n \; = \; 7^n + \frac{2n+1}{7^n} This means that n = 1 N a n = n = 1 N 7 n + n = 1 N 2 n + 1 7 n = 7 6 ( 7 N 1 ) + 5 × 7 N ( 3 N + 5 ) 9 × 7 N n = 1 N 1 2 a n = 7 12 ( 7 N 1 ) + 5 18 3 N + 5 18 × 7 N \begin{aligned} \sum_{n=1}^N a_n & = \; \sum_{n=1}^N 7^n + \sum_{n=1}^N \frac{2n+1}{7^n} \; = \;\tfrac76(7^N-1) + \frac{5 \times 7^N - (3N+5)}{9\times 7^N} \\ \sum_{n=1}^N \tfrac12a_n & = \; \tfrac{7}{12}(7^N-1) + \tfrac{5}{18} - \frac{3N+5}{18 \times 7^N} \end{aligned} If N N is odd, then 7 N 7 ( m o d 12 ) 7^N \equiv 7 \pmod{12} , and hence 7 ( 7 N 1 ) 6 ( m o d 12 ) 7(7^N-1) \equiv 6 \pmod{12} . Thus 7 12 ( 7 N 1 ) = X N + 1 2 \tfrac{7}{12}(7^N-1) \; =\; X_N + \tfrac12 where X N X_N is an integer. Thus n = 1 N 1 2 a n = X N + 7 9 3 N + 5 18 × 7 N = X N + 7 9 ε N \sum_{n=1}^N \tfrac12a_n \; = \; X_N + \tfrac79 - \frac{3N+5}{18 \times 7^N} \; = \; X_N + \tfrac79 - \varepsilon_N It is clear that 0 < ε 2017 < 7 9 0 < \varepsilon_{2017} < \tfrac79 (in fact ε 2017 1.086 × 1 0 1702 \varepsilon_{2017} \approx 1.086 \times 10^{-1702} ) so that S = n = 1 2017 1 2 a n = X 2017 = 7 12 ( 7 2017 1 ) 1 2 S \; = \; \left\lfloor \sum_{n=1}^{2017}\tfrac12a_n\right\rfloor \; = \; X_{2017} \; = \; \tfrac{7}{12}(7^{2017}-1) - \tfrac12 and hence 2 S + 1 = 7 6 ( 7 2017 1 ) 2S+1 \; = \; \tfrac76(7^{2017}-1)

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...