Throw a coin and a dice.

I have a dice and a coin. And I will throw them.

Let a a to the probability of getting a front face of a coin, and b b to the probability of getting a product 8 8 , or a sum 5 5 . ( I will throw a die twice, and a coin once. And the dice is a regular hexahedron. And the dice has 1 ~ 6 eyes. And, the answer is 21 decimal digits.)

Find a b + b a \displaystyle \frac { a } { b } + \frac { b } { a } .


The answer is 3.333333333333333333333.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

. .
Feb 26, 2021

A coin has one front face and one back face, so the probability a a is 1 2 \displaystyle \frac { 1 } { 2 } .

And a dice has 6 faces because the problem has said the dice is regular hexahedron.

So, b b equals to ( 1 , 8 ) , ( 2 , 4 ) , ( 4 , 2 ) , ( 8 , 1 ) 2 36 , ( 1 , 4 ) , ( 2 , 3 ) , ( 3 , 2 ) , ( 4 , 1 ) 4 36 2 36 + 4 36 = 6 36 = 1 6 \displaystyle \cancel { ( 1, 8 ) }, ( 2, 4 ), ( 4, 2 ), \cancel { ( 8, 1 ) } \rightarrow \frac { 2 } { 36 }, ( 1, 4 ), ( 2, 3 ), ( 3, 2 ), ( 4, 1 ) \rightarrow \frac { 4 } { 36 } \Rightarrow \frac { 2 } { 36 } + \frac { 4 } { 36 } = \frac { 6 } { 36 } = \frac { 1 } { 6 } .

Then, a b + b a = 1 2 1 6 + 1 6 1 2 = 1 2 ÷ 1 6 + 1 6 ÷ 1 2 = 1 2 1 × 6 3 + 1 6 3 × 2 1 = 3 + 1 3 = 3.333333333 \displaystyle \displaystyle \frac { a } { b } + \frac { b } { a } = \frac { \frac { 1 } { 2 } } { \frac { 1 } { 6 } } + \frac { \frac { 1 } { 6 } } { \frac { 1 } { 2 } } = \frac { 1 } { 2 } \div \frac { 1 } { 6 } + \frac { 1 } { 6 } \div \frac { 1 } { 2 } = \frac { 1 } { \cancel { 2 } _ { 1 } } \times \cancel { 6 } _ { 3 } + \frac { 1 } { \cancel { 6 } _ { 3 } } \times \cancel { 2 } _ { 1 } = 3 + \frac { 1 } { 3 } = 3.333333333\cdots .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...