Throw the calculator in dustbin- 2

Find the value of 1 49 \dfrac{1}{49} up to 6 decimal places.

Provide your answer as: answer × 1 0 6 \color{#D61F06}{\text{answer}}\times 10^6 round to the nearest integer.

Hint : Read the Mental Math Tricks .


The answer is 20408.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Sravanth C.
Feb 8, 2016

From the Mental Math Tricks wiki, we can find the value of 1 49 \dfrac 1{49} in this way:

1 5 = 0 remainder 1 10 ( 1 ) + 0 5 = 10 5 = 2 remainder 0 10 ( 0 ) + 2 5 = 2 5 = 0 remainder 2 10 ( 2 ) + 0 5 = 20 5 = 4 remainder 0 10 ( 0 ) + 4 5 = 4 5 = 0 remainder 4 10 ( 4 ) + 0 5 = 40 5 = 8 remainder 0 \begin{aligned}&&\dfrac 15\quad \, \, &=& \color{#D61F06}{0} \text{ remainder 1} \\ \dfrac{10(1)+0}{5} \quad &=& \dfrac{10}{5} \quad \, \, &=& \color{#D61F06}{2} \text{ remainder 0} \\ \dfrac{10(0)+2}{5} \quad &=& \dfrac{2}{5} \quad &=& \color{#D61F06}{0} \text{ remainder 2} \\ \dfrac{10(2)+0}{5} \quad &=& \dfrac{20}{5} \quad &=& \color{#D61F06}{4} \text{ remainder 0} \\ \dfrac{10(0)+4}{5} \quad &=& \dfrac{4}{5} \quad &=& \color{#D61F06}{0} \text{ remainder 4} \\ \dfrac{10(4)+0}{5} \quad &=& \dfrac{40}{5} \quad &=& \color{#D61F06}{8} \text{ remainder 0} \\\end{aligned}

Therefore we can say 1 49 = 0.020408 \dfrac{1}{49}=\color{#D61F06}{0.020408}

Hence the answer is, 0.020408 × 1 0 6 = 20408 \color{#D61F06}{0.020408}\times 10^6=\boxed{20408}

Another quick way to do this is to note that 1 49 = 1 50 + 1 5 0 2 + 1 5 0 3 + = 2 1 0 2 + 2 2 1 0 4 + 2 3 1 0 6 + + 2 n 1 0 2 n + . \frac{1}{49} = \frac{1}{50} + \frac{1}{50^2} + \frac{1}{50^3} + \ldots = \frac{2}{10^2} + \frac{2^2}{10^4} + \frac{2^3}{10^6} + \ldots + \frac{2^n}{10^{2n}} + \ldots.

Eli Ross Staff - 5 years, 4 months ago

Log in to reply

Great! Nice way to do it.

Sravanth C. - 5 years, 4 months ago

Super solution sir

Raghu Ram - 5 years, 3 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...