Throwback to 2014

Calculus Level 3

2014 2014 d x 1 + sin 2015 x + 1 + sin 4030 x = ? \large \int ^{2014}_{-2014} \frac {dx}{1+\sin ^{2015}x+\sqrt {1+\sin ^{4030}x}}=?


The answer is 2014.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

I = 2014 2014 d x 1 + sin 2015 x + 1 + sin 4030 x Using a b f ( x ) d x = a b f ( a + b x ) d x = 1 2 2014 2014 ( 1 1 + sin 2015 x + 1 + sin 4030 x + 1 1 sin 2015 x + 1 + sin 4030 x ) d x = 1 2 2014 2014 1 sin 2015 x + 1 + sin 4030 x + 1 + sin 2015 x + 1 + sin 4030 x ( 1 + sin 2015 x + 1 + sin 4030 x ) ( 1 sin 2015 x + 1 + sin 4030 x ) d x = 1 2 2014 2014 2 + 2 1 + sin 4030 x 2 + 2 1 + sin 4030 x d x = 1 2 2014 2014 d x = 1 2 x 2014 2014 = 2014 \begin{aligned} I & = \int_{-2014}^{2014} \frac {dx}{1+\sin^{2015}x + \sqrt{1+\sin^{4030}x}} & \small \color{#3D99F6} \text{Using }\int_a^b f(x)\ dx = \int_a^b f(a+b-x) \ dx \\ & = \frac 12 \int_{-2014}^{2014} \left(\frac 1{1+\sin^{2015}x + \sqrt{1+\sin^{4030}x}} + \frac 1{1-\sin^{2015}x + \sqrt{1+\sin^{4030}x}} \right) dx \\ & = \frac 12 \int_{-2014}^{2014} \frac {1-\sin^{2015}x + \sqrt{1+\sin^{4030}x} + 1+\sin^{2015}x + \sqrt{1+\sin^{4030}x}} {\left(1+\sin^{2015}x + \sqrt{1+\sin^{4030}x} \right) \left(1-\sin^{2015}x + \sqrt{1+\sin^{4030}x}\right)} dx \\ & = \frac 12 \int_{-2014}^{2014} \frac {2 + 2\sqrt{1+\sin^{4030}x}}{2+2 \sqrt{1+\sin^{4030}x}} dx \\ & = \frac 12 \int_{-2014}^{2014} dx = \frac 12 x \ \bigg|_{-2014}^{2014} = \boxed{2014} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...