Ticklish series

Algebra Level 3

( 1 × 1 ! ) + ( 2 × 2 ! ) + ( 3 × 3 ! ) + + ( 50 × 50 ! ) (1 \times 1!) + (2 \times 2!) + (3 \times 3!) + \cdots + (50 \times 50!) = ? = \, ?

51! 51! + 1 51! - 1 51! + 50

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Kay Xspre
Jan 27, 2016

n ( n ! ) = ( ( n + 1 ) 1 ) n ! = ( n + 1 ) ! n ! n(n!) = ((n+1)-1)n! = (n+1)!-n! . Hence n = 1 50 n ( n ! ) = ( 51 ! 50 ! ) + ( 50 ! 49 ! ) + + ( 2 ! 1 ! ) = 51 ! 1 \sum_{n=1}^{50}n(n!) = (51!-50!)+(50!-49!)+\dots+(2!-1!) = 51!-1

Raman Saini
Jan 27, 2016

1×1!=(2-1)×1!=2!-1!

2×2!=(3-2)×2!=3!-2!

3×3!=.............=4!-3!

.................

.........................

.............................

................................

49×49=50!-49!

50×50=51!-50!

On adding... we get 50!-1

There is no 50 ! 1 . \text { There is no } 50! - 1 \text { . }

. . - 3 months, 2 weeks ago
James Wilson
Jan 14, 2021

I will prove, using mathematical induction, n = 1 k n n ! = ( k + 1 ) ! 1. \sum_{n=1}^kn\cdot n!=(k+1)!-1.

Base case ( P ( k = 1 ) P(k=1) ): n = 1 1 n n ! = 1 1 ! = 1 = ( 1 + 1 ) ! 1 \sum_{n=1}^1 n\cdot n! = 1\cdot 1! = 1 = (1+1)!-1

Induction step: Assume P ( k ) P(k) . That is, assume n = 1 k n n ! = ( k + 1 ) ! 1 \sum_{n=1}^kn\cdot n!=(k+1)!-1 for some k 1. k\geq 1.

n = 1 k + 1 n n ! = ( k + 1 ) ! 1 + ( k + 1 ) ( k + 1 ) ! = ( k + 2 ) ( k + 1 ) ! 1 = ( k + 2 ) ! 1 P ( k + 1 ) \Rightarrow \sum_{n=1}^{k+1} n\cdot n!= (k+1)!-1+(k+1)(k+1)! = (k+2)(k+1)!-1=(k+2)!-1 \Leftrightarrow P(k+1)

Thus, n = 1 k n n ! = ( k + 1 ) ! 1 \sum_{n=1}^kn\cdot n!=(k+1)!-1 for all k 1. k\geq 1.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...