Til the last breath

Algebra Level 5

n = 1 n ( n + 2 ) 1 2 3 + 2 3 4 + + n ( n + 1 ) ( n + 2 ) \large \displaystyle \sum_{n=1}^{\infty} \dfrac{n(n+2)}{1\cdot2\cdot3+2\cdot3\cdot4+\cdots +n(n+1)(n+2)}

If the above expression is in the form A B \color{#D61F06}{ \dfrac{A}{B}} where A \color{#D61F06}{A} and B \color{#D61F06}{B} are co-prime positive integers, then let ϕ = A × B \color{#456461}{\phi}=\color{#D61F06}{A}\times \color{#D61F06}{B} .

φ = ϕ ϕ 2 ϕ 3 ϕ 4 \large \color{#69047E}{\varphi}=\sqrt{\color{#456461}{\phi}\sqrt{\color{#456461}{\phi}^2\sqrt{\color{#456461}{\phi}^3\sqrt{\color{#456461}{\phi}^4\cdots}}}}

Find the value of ( φ 5 ) ! \color{#3D99F6}{\left(\dfrac{\sqrt{\color{#69047E}{\varphi}}}{5}\right)!} .

Notation :

! ! denotes the factorial notation. For example, 10 ! = 1 × 2 × 3 × × 10 10! = 1\times2\times3\times\cdots\times10 .


Inspired by Rohit Udaiwal.

Try the Part-2 here


The answer is 6.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Rishabh Jain
Mar 11, 2016

Inspiration

If you found this problem easy do try this one too.. :-) S = n = 1 ( n ( n + 2 ) r = 1 n r ( r + 1 ) ( r + 2 ) ) \large\mathfrak{S}=\displaystyle\sum_{n=1}^{\infty}\left(\dfrac{n(n+2)}{\displaystyle\sum_{r=1}^n r(r+1)(r+2)}\right) Using formula for sum of n,n 2 ^2 ,n 3 ^3 denominator can be simplified as: n = 1 ( n ( n + 2 ) n ( n + 1 ) ( n + 2 ) ( n + 3 ) 4 ) \large \displaystyle\sum_{n=1}^{\infty}\left(\dfrac{\cancel{n(n+2)}}{\frac{\cancel{ n}(n+1)\cancel{(n+2)}(n+3)}{4}}\right) = n = 1 ( 4 ( n + 1 ) ( n + 3 ) ) \large=\displaystyle\sum_{n=1}^{\infty}\left(\dfrac{4}{(n+1)(n+3)}\right) Using Partial Fractions-Cover Up rule :- 4 ( n + 1 ) ( n + 3 ) = 2 ( 1 n + 1 1 n + 3 ) \dfrac{4}{(n+1)(n+3)}=2\left(\dfrac{1}{n+1}-\dfrac{1}{n+3}\right) Therefore, S = 2 n = 1 ( 1 n + 1 1 n + 3 ) \large\mathfrak S=2\displaystyle\sum_{n=1}^{\infty}\left(\dfrac{1}{n+1}-\dfrac{1}{n+3}\right) A T e l e s c o p i c S e r i e s \large\color{#69047E}{\mathbf{A Telescopic Series}} = 2 ( 1 2 + 1 3 ) \large =2\left(\dfrac{1}{2}+\dfrac{1}{3}\right) = 5 3 \large =\dfrac{5}{3} ϕ = 5 × 3 = 15 \Large\implies \color{#456461}{\phi}=5\times 3=15

φ = ϕ 1 2 + 2 2 2 + 3 2 3 \Large\color{#69047E}{\varphi}=\color{#456461}{\phi}^{\color{#EC7300}{\frac{1}{2}+\frac{2}{2^2}+\frac{3}{2^3}\cdots}} φ = ϕ 2 ( ) ~~~~~~~~~~~\Large\implies \color{#69047E}{\varphi}=\color{#456461}{\phi}^{\color{#EC7300}{2}}~~~~~~(**)~~~~~~~ ( φ 5 ) ! = ( ϕ 5 ) ! = 3 ! = 6 \large\therefore \color{#3D99F6}{\left(\dfrac{\sqrt{\color{#69047E}{\varphi}}}{5}\right)!}=\left(\dfrac{\color{#456461}{\phi}}{5}\right)!=3!=\boxed 6


( ) ( A G P ) \Large(**)\small{\mathbf{( AGP)}} S = 1 2 + 2 2 2 + 3 2 3 + 4 2 4 + \small{\mathfrak{S}=\frac { 1 }{ 2} +\frac { 2 }{ 2^2 } +\frac { 3 }{ 2^3} +\frac { 4 }{ 2^4 } +\dots~~~~~~} 1 2 S = 1 2 2 + 2 2 3 + 3 2 4 + 4 2 5 + \small{\dfrac{1}{2}\mathfrak{S}=~~~~~~~~\frac { 1 }{2^2 } +\frac { 2 }{ 2^3} +\frac { 3 }{ 2^4 } +\frac { 4 }{ 2^5} +\dots} Subtracting we get: 1 2 S = 1 2 + 1 2 2 + 1 2 3 + 1 2 4 + 1 2 5 + \small{\dfrac{1}{2}\mathfrak{S}=\frac { 1 }{ 2 }+ \frac { 1 }{2^2} +\frac { 1}{ 2^3} +\frac { 1 }{ 2^4 } +\frac { 1 }{ 2^5} +\dots} ( I n f i n i t e G P ) \small{\mathbf{(Infinite ~GP)}} S = 2 ( 1 2 1 1 2 ) = 2 \small{\Rightarrow \mathfrak{S}=2\left(\dfrac{\frac{1}{2}}{1-\frac{1}{2}}\right)=2} S = 2 \small{\therefore \color{#EC7300}{\mathfrak S=2}}

Did the exact same! Happy to be the first one to solve your question! Nice solution!!

Akshat Sharda - 5 years, 3 months ago

Log in to reply

Yeah... Thanks ... and Its always good to be first ;-)

Rishabh Jain - 5 years, 3 months ago

I guess I have to contend with the fifth spot :D.

Nice question, great solution @Rishabh Cool (+1)

Pulkit Gupta - 5 years, 3 months ago

Log in to reply

Thanks ;-)

Rishabh Jain - 5 years, 3 months ago

Nice problem.

Abhi Kumbale - 5 years, 3 months ago

Log in to reply

Thanks... ;-)

Rishabh Jain - 5 years, 3 months ago

it's very awesome

Duy Anh Tran Le - 5 years, 3 months ago

Log in to reply

Thanks!! ....... :-)

Rishabh Jain - 5 years, 3 months ago

I think you invest a lot of time on writing a problem ( actually two are more incorporated) and its solution. BTW nice solution.

Aakash Khandelwal - 5 years, 3 months ago

Log in to reply

No. Actually now I have become habitual of writing in Latex and its not tiring at all... and for writing a problem I'll say whenever I get an inspiration I weave it into a problem..... BTW Thanks... ;-)

Rishabh Jain - 5 years, 3 months ago

A "Cool" question and a "Cool" solution.

Anshuman Singh Bais - 5 years, 3 months ago

Log in to reply

Thanks.. ;-)

Rishabh Jain - 5 years, 3 months ago

very nice , i did the same :D

Romeo Gomez - 5 years, 3 months ago

Nice problem and a great solution!

Yash Gadhia - 5 years, 3 months ago

Log in to reply

Thanks ;-)..

Rishabh Jain - 5 years, 3 months ago

"If you found this problem easy to do, try this one"

Again and again -_-

Terza Reyhan - 5 years, 3 months ago

How did u simplify sigma r(r+1)(r+2)expand

Suneel Kumar - 5 years, 2 months ago

Did the same way

I Gede Arya Raditya Parameswara - 4 years, 4 months ago

Log in to reply

Great... :-)

Rishabh Jain - 4 years, 4 months ago

This problem was posted a year ago... Where did you find it ?? :-)

Rishabh Jain - 4 years, 4 months ago
Adams Ayoade
Mar 20, 2016

This is very cool. Glad i could solve it easily.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...