Tilted cylindrical tank - 2

Geometry Level 4

A cylindrical tank of base diameter 6 6 and height 10 10 is filled to one tenth of its height with water. This is shown on the left of the above figure. Then, the tank is tilted by 3 0 30^{\circ} as shown on the right of the above figure. Find the new height of the water surface relative to the ground.


The answer is 2.318.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Nov 10, 2020

Align the axis of the cylinder along the x x -axis with the water surface of the tilted cylinder be symmetrically divided by the x z xz -plane. We note that the cross-sectional area perpendicular to the x x -axis at x x is A = π r 2 r 2 cos 1 ( h r ) + h r 2 h 2 A = \pi r^2 - r^2 \cos^{-1} \left(\dfrac hr \right) + h \sqrt{r^2 - h^2} , where r = 3 r=3 and h ( x ) h(x) is a function of x x (the blue line). Let the point on the water surface farthest from the z z -axis be b b . Then h ( x ) + 3 x b = 3 h ( x ) = 3 ( b x ) 3 \dfrac {h(x)+3}{x-b} = - \sqrt 3 \implies h(x) = \sqrt 3(b-x) - 3 . As the volume of the water in the tank is 9 π 9\pi , we have:

9 π = 0 b ( 9 π 9 cos 1 ( h 3 ) + h 9 h 2 ) d x = 9 π b 9 0 b cos 1 ( h 3 ) d x + 0 b h 9 h 2 d x 9\pi = \int_0^b \left(9\pi - 9\cos^{-1} \left(\frac h3 \right) + h\sqrt{9-h^2}\right) dx = 9\pi b - 9 \int_0^b \cos^{-1} \left(\frac h3 \right) dx + \int_0^b h\sqrt{9-h^2}\ dx

Consider the last two integrals separately,

I = 0 b cos h 3 d x Let u = h 3 = 3 1 b 3 1 cos u d u d u = d h 3 = d x 3 = 3 [ u cos 1 u + u 1 u 2 d u ] 1 b 3 1 Integration by parts = 3 [ u cos 1 u 1 u 2 ] 1 b 3 1 = 3 [ ( b 3 1 ) cos 1 ( b 3 1 ) 2 b 3 b 2 3 + π ] = ( b 3 ) cos 1 ( b 3 1 ) 2 3 b b 2 + 3 π \begin{aligned} I & = \int_0^b \cos \frac h3 \ dx & \small \blue{\text{Let }u = \frac h3} \\ & = \sqrt 3 \int_{-1}^{\frac b{\sqrt 3}-1} \cos u \ du & \small \blue{\implies du = \frac {dh}3 = - \frac {dx}{\sqrt 3}} \\ & = \sqrt 3 \left[u \cos^{-1} u + \int \frac u{\sqrt{1-u^2}} du \right]_{-1}^{\frac b{\sqrt 3}-1} & \small \blue{\text{Integration by parts}} \\ & = \sqrt 3 \left[u \cos^{-1} u - \sqrt{1-u^2} \right]_{-1}^{\frac b{\sqrt 3}-1} \\ & = \sqrt 3 \left[\left(\frac b{\sqrt 3}-1\right) \cos^{-1} \left(\frac b{\sqrt 3}-1\right) - \sqrt{\frac {2b}{\sqrt 3}-\frac {b^2}3} + \pi\right] \\ & = (b - \sqrt 3) \cos^{-1} \left(\frac b{\sqrt 3}-1\right) - \sqrt{2\sqrt 3b - b^2} + \sqrt 3 \pi \end{aligned}

J = 0 b h 9 h 2 d x Let cos θ = h 3 = 9 3 cos 1 ( b 3 1 ) π sin 2 θ cos θ d θ sin θ d θ = d h 3 = d x 3 = 9 3 2 3 b b 2 3 0 v 2 d v = ( 2 3 b b 2 ) 3 2 \begin{aligned} J & = \int_0^b h \sqrt{9-h^2} \ dx & \small \blue{\text{Let }\cos \theta = \frac h3} \\ & = 9\sqrt 3 \int_{\cos^{-1}\left(\frac b{\sqrt 3}-1\right)}^\pi \sin^2 \theta \cos \theta \ d\theta & \small \blue{\implies - \sin \theta \ d\theta = \frac {dh}3 = - \frac {dx}{\sqrt 3}} \\ & = 9\sqrt 3 \int_{\sqrt{\frac {2\sqrt 3 b-b^2}3}}^0 v^2 \ dv \\ & = - \left(2\sqrt 3 b - b^2\right)^\frac 32 \end{aligned}

Therefore we have:

9 π b 9 ( b 3 ) cos 1 ( b 3 1 ) 9 2 3 b b 2 + 9 3 π ( 2 3 b b 2 ) 3 2 = 9 π 9\pi b - 9(b - \sqrt 3) \cos^{-1} \left(\frac b{\sqrt 3}-1\right) - 9\sqrt{2\sqrt 3b - b^2} + 9\sqrt 3 \pi - \left(2\sqrt 3 b - b^2\right)^\frac 32 = 9\pi

Solving it numerically, we get b 2.67709164 b \approx 2.67709164 . And the height from the ground of the water surface h = b cos 3 0 2.318 h = b \cos 30^\circ \approx \boxed{2.318} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...